第 347 场周赛

A 移除字符串中的尾随零

在这里插入图片描述
模拟

class Solution {
public:
    string removeTrailingZeros(string num) {
        while(num.back()=='0')
            num.pop_back();
        return num;
    }   
};

B 对角线上不同值的数量差

在这里插入图片描述

还是模拟…

class Solution {
public:
    vector<vector<int>> differenceOfDistinctValues(vector<vector<int>> &g) {
        int m = g.size(), n = g[0].size();
        vector<vector<int>> res(m, vector<int>(n));
        vector<int> visleft(51), visright(51);
        for (int i = 0; i < m; i++)
            for (int j = 0; j < n; j++) {
                fill(visleft.begin(), visleft.end(), 0);
                fill(visright.begin(), visright.end(), 0);
                for (int r = 0; r < m; r++) {
                    int c = r - i + j;
                    if (c >= 0 && c < j)
                        visleft[g[r][c]] = 1;
                    else if (c > j && c < n)
                        visright[g[r][c]] = 1;
                }
                res[i][j] = abs(count(visleft.begin(), visleft.end(), 1) - count(visright.begin(), visright.end(), 1));
            }
        return res;
    }
};

C 使所有字符相等的最小成本

在这里插入图片描述

动态规划: 定义 s u f i , j suf_{i,j} sufi,j为将后缀s[i,n-1]通过第二种操作转化全为j的最小代价,有状态转移方程:
s u f i , 0 = { s u f i + 1 , 1 + n − i  if  s i = ′ 1 ′ s u f i + 1 , 0  if  s i = ′ 0 ′ suf_{i,0}=\left\{\begin{matrix} suf_{i+1,1} + n-i & \text{ if } s_i='1' \\ suf_{i+1,0} & \text{ if } s_i='0' \end{matrix}\right. sufi,0={sufi+1,1+nisufi+1,0 if si=1 if si=0
s u f i , 1 = { s u f i + 1 , 0 + n − i  if  s i = ′ 0 ′ s u f i + 1 , 1  if  s i = ′ 1 ′ suf_{i,1}=\left\{\begin{matrix} suf_{i+1,0} + n-i & \text{ if } s_i='0' \\ suf_{i+1,1} & \text{ if } s_i='1' \end{matrix}\right. sufi,1={sufi+1,0+nisufi+1,1 if si=0 if si=1
类似地,定义 p r e i , j pre_{i,j} prei,j为将前缀s[0,i]通过第一种操作转化全为j的最小代价,有状态转移方程:
p r e i , 0 = { p r e i − 1 , 1 + i + 1  if  s i = ′ 1 ′ p r e i − 1 , 0  if  s i = ′ 0 ′ pre_{i,0}=\left\{\begin{matrix} pre_{i-1,1} + i+1 & \text{ if } s_i='1' \\ pre_{i-1,0} & \text{ if } s_i='0' \end{matrix}\right. prei,0={prei1,1+i+1prei1,0 if si=1 if si=0
p r e i , 1 = { p r e i − 1 , 0 + i + 1  if  s i = ′ 0 ′ p r e i + 1 , 1  if  s i = ′ 1 ′ pre_{i,1}=\left\{\begin{matrix} pre_{i-1,0} + i+1 & \text{ if } s_i='0' \\ pre_{i+1,1} & \text{ if } s_i='1' \end{matrix}\right. prei,1={prei1,0+i+1prei+1,1 if si=0 if si=1

枚举前两种操作的划分位置即可

class Solution {
public:
    long long minimumCost(string s) {
        int n = s.size();
        long long pre[n][2], suf[n][2];
        suf[n - 1][0] = s[n - 1] == '0' ? 0 : 1;
        suf[n - 1][1] = s[n - 1] == '1' ? 0 : 1;
        for (int i = n - 2; i >= 0; i--) {
            suf[i][0] = s[i] == '1' ? suf[i + 1][1] + n - i : suf[i + 1][0];
            suf[i][1] = s[i] == '0' ? suf[i + 1][0] + n - i : suf[i + 1][1];
        }
        pre[0][0] = s[0] == '0' ? 0 : 1;
        pre[0][1] = s[0] == '1' ? 0 : 1;
        for (int i = 1; i < n; i++) {
            pre[i][0] = s[i] == '1' ? pre[i - 1][1] + i + 1 : pre[i - 1][0];
            pre[i][1] = s[i] == '0' ? pre[i - 1][0] + i + 1 : pre[i - 1][1];
        }
        long long res = min({pre[n - 1][0], pre[n - 1][1], suf[0][0], suf[0][1]});
        for (int i = 0; i < n - 1; i++) {//s[0,i]上用第一种操作,s[i+1,n-1]上用第二种操作
            res = min(res, pre[i][0] + suf[i + 1][0]);
            res = min(res, pre[i][1] + suf[i + 1][1]);
        }
        return res;
    }
};

D 矩阵中严格递增的单元格数

在这里插入图片描述

枚举: 按元素大小升序枚举矩阵中的元素,同时维护当前结尾在各行各列上最长严格递增的单元格序列的长度,注意值相等的元素要同时更新各行列上的最长长度

class Solution {
public:
    int maxIncreasingCells(vector<vector<int>> &g) {
        int m = g.size(), n = g[0].size();
        vector<int> rmx(m), cmx(n);//rmx[i]: 矩阵第i行存在这样的元素g[i][_]:存在长度为rmx[i]以g[i][_]为结尾的升序单元格序列, cmx[i]: 矩阵第i列存在这样的元素g[_][i]:存在长度为cmx[i]以g[_][i]为结尾的升序单元格序列
        vector<tuple<int, int, int>> li;
        for (int i = 0; i < m; i++)
            for (int j = 0; j < n; j++)
                li.emplace_back(g[i][j], i, j);
        sort(li.begin(), li.end());
        int N = m * n;
        for (int i = 0; i < N;) {
            int j = i;
            while (j + 1 < N && get<0>(li[j + 1]) == get<0>(li[i]))
                j++;//同时处理值相等的方格
            vector<int> temp(j - i + 1);
            for (int k = i; k <= j; k++) {
                auto [vk, rk, ck] = li[k];
                temp[k - i] = 1 + max(rmx[rk], cmx[ck]);//当前方格与前一个方格要么同行要么同列
            }
            for (int k = i; k <= j; k++) {
                auto [vk, rk, ck] = li[k];
                rmx[rk] = max(rmx[rk], temp[k - i]);
                cmx[ck] = max(cmx[ck], temp[k - i]);
            }
            i = j + 1;
        }
        return *max_element(rmx.begin(), rmx.end());
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值