- 题目描述
假设一个探险家被困在了地底的迷宫之中,要从当前位置开始找到一条通往迷宫出口的路径。迷宫可以用一个二维矩阵组成,有的部分是墙,有的部分是路。迷宫之中有的路上还有门,每扇门都在迷宫的某个地方有与之匹配的钥匙,只有先拿到钥匙才能打开门。请设计一个算法,帮助探险家找到脱困的最短路径。如前所述,迷宫是通过一个二维矩阵表示的,每个元素的值的含义如下 0-墙,1-路,2-探险家的起始位置,3-迷宫的出口,大写字母-门,小写字母-对应大写字母所代表的门的钥匙
输入描述:
迷宫的地图,用二维矩阵表示。第一行是表示矩阵的行数和列数M和N
后面的M行是矩阵的数据,每一行对应与矩阵的一行(中间没有空格)。M和N都不超过100, 门不超过10扇。
输出描述:
路径的长度,是一个整数
输入
5 5
02111
01a0A
01003
01001
01111
输出
7
- 思路
设置一个二维数组G[m][n]存地图的数据,另一个三维数组V[x][y][k]表示是否已经访问过,其中的k代表已经获得的钥匙。更新钥匙时用node.k|(1<<(G[x][y]-‘a’))。举个例子,一开始我们没有任何钥匙,node.k为0000000000,获得一个钥匙a后,进行上面的操作,k更新为0000000001,再获得一个钥匙c后,继续上面的操作,k更新为0000000101。后面遇到门后,将k与1<<(G[x][y]-‘A’)相与,假设结果大于0,则可以打开。 - C++实现
#include <iostream>
#include <queue>
using namespace std;
struct node{
int x,y,k;
node(int x,int y,int k):x(x),y(y),k(k){}
};
char G[100][100];
int V[100][100][1100];
int main()
{
int n,m,k,ri,rj,res=0;
queue<node> q;
cin>>m>>n;
for(int i=0;i<m;i++)
{
for(int j=0;j<n;j++)
{
cin>>G[i][j];
if(G[i][j]=='2')
ri=i,rj=j;//入口位置
}
}
q.push(node(ri,rj,0));
while(!q.empty())
{
k=q.size();
res++;
while(k--)
{
node cur=q.front();
q.pop();
int dx[]={-1,0,1,0};
int dy[]={0,-1,0,1};
for(int d=0;d<4;d++)
{
int x=cur.x+dx[d];
int y=cur.y+dy[d];
if(x>=0 && x<m && y>=0 && y<n && V[x][y][cur.k]==0 && G[x][y]!='0')
{
V[x][y][cur.k]=1;
if(G[x][y]>='a' && G[x][y]<='z')
q.push(node(x,y,cur.k|(1<<(G[x][y]-'a'))));
else if(G[x][y]>='A' && G[x][y]<='Z')
{
if((cur.k & (1<<(G[x][y]-'A')))>0)
q.push(node(x,y,cur.k));
}
else if(G[x][y]=='3')
{
cout<<res<<endl;
return 0;
}
else
{
q.push(node(x,y,cur.k));
}
}
}
}
}
return 0;
}