- 博客(11)
- 收藏
- 关注
原创 python知识点
一.赋值、浅拷贝和深拷贝的区别?a = [1,2,"hello",['python', 'C++'],[1,2,3]]b = a赋值其实是对象的引用,a和b指向的是同一块内存,不会再创建一个新的内存空间或者对象。b只不过是a的别名 是引用,如果b修改了,a同样被修改。a修改 b同样也是b is a 返回true2. 浅拷贝浅拷贝是重新创建了一个对象,其内容非原对象本身的引用,而是原对象内第一层对象的引用。对于可变数据类型 ,是复制了其引用 修改同步但是不可变类型 int str等,.
2021-01-13 00:37:18 292
原创 Leetcode 51 N 皇后
渣渣菜鸡竟然写出了 N皇后虽然时间和内存都蛮大的 但是 通过了// leetcode 51/*输入: 4输出: [[".Q..", // 解法 1 "...Q", "Q...", "..Q."],["..Q.", // 解法 2 "Q...", "...Q", ".Q.."]]解释: 4 皇后问题存在两个不同的解法。*/思路:从左上...
2019-08-06 17:41:00 153
原创 leetcode 38
超简单的题 但是总有些小毛病报数序列是一个整数序列,按照其中的整数的顺序进行报数,得到下一个数。其前五项如下:1. 12. 113. 214. 12115. 1112211被读作"one 1"("一个一") , 即11。11 被读作"two 1s"("两个一"), 即21。21 被读作"one 2", "one 1...
2019-08-06 06:44:06 165
原创 树的子树
1. 找到root1 中 值与root2 的根节点值相同的节点,再判断下面的结构是否相同2. 即 root1 的左子树 是否 和root2的左相同 root1的右 是否 和 root2 的
2019-07-25 08:01:44 1407
原创 jian4-重建二叉树
https://www.nowcoder.com/practice/8a19cbe657394eeaac2f6ea9b0f6fcf6?tpId=13&tqId=11157&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking经典的二叉树 题目 使用递归求解对于树 有很...
2019-07-25 01:08:07 162
原创 Batch Norm 理解
1.简介是神经网络中常用的一种优化 加快收敛的方式,而是一个自适应的重新参数化的方法,目的在于解决深层神经网络训练困难的问题。Batch 通过一定的规范化手段,对每个隐层神经元,把其经过非线性函数映射后逐渐向取值区间极限饱和区靠拢的输入分布 强行拉回到均值为0,方差为1 的比较标准的正态分布,使得非线性变换函数的输入值落入对输入比较敏感的区域,从而相当于放大了梯度,避免了梯度消失的问题...
2019-07-24 15:35:53 561
原创 编号转换(百度2016实习生真题)
小、B最近对电子表格产生了浓厚的兴趣,她觉得电子表格很神奇,功能远比她想象的强大。她正在研究的是单元格的坐标编号,她发现表格单元一般是按列编号的,第1列编号为A,第2列为B,以此类推,第26列为Z。之后是两位字符编号的,第27列编号为AA,第28列为AB,第52列编号为AZ。之后则是三位、四位、五位……字母编号的阿萨德,规则类似。十大a表格单元所在的行则是按数值从1开始编号的,表格单元名称则是...
2019-07-22 19:59:41 302
原创 集成学习
简介并不是所有的集成学习框架中的基学习器都是弱模型。弱模型是偏差高(在训练集上准确度低)方差小(防止过拟合能力强)的模型。常指泛化性能略优于随机猜测的学习器,例如在二分类问题上精度略高于50%的分类器。其分类性能并不是很强。目前常用的三种框架是Bagging、Boosting和Stacking。Boosting 是弱模型,偏差高方差低Bagging 和Stacking是强模型,偏差低方差...
2019-03-06 00:38:09 433
原创 偏差与方差
引言偏差 Bias方差 Variance写这篇文章的原因是集成学习中提到了Boosting主要是减少Bias,Bagging 主要是减小Variance。Bias和Variance是针对Generalization(泛化、⼀一般化)来说的。在机器学习中,我们用训练数据集学习一个模型,我们通常会定义一个损失函数(Loss Function),通过最小化这个损失函数,提高模型性能。但单纯得将训...
2019-02-04 19:07:00 943 2
原创 ROC与AUC理解
ROC与AUC简介ROC曲线ROC的动机ROC曲线特殊点ROC曲线的绘制为什么使用ROCROC曲线使用多个实例概率/得分相同AUC(Area Under ROC Curve)AUC判断分类器优劣的标准:AUC的物理意义损失公式AUC值的计算sklearn使用参考简介ROC:(Receiver Operating Characteristic) 受试者工作特征 曲线纵轴 : 真正例率 True...
2019-02-02 10:30:26 9797 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人