python async

要使用 Python 的 async 特性编写一个代码,以交替使用两个 AI API 处理数据,您可以按照以下步骤进行。假设这两个 AI API 的调用是异步的,并且我们需要在两个 API 之间轮流处理一组数据。

import asyncio
import aiohttp

async def call_api_1(data):
async with aiohttp.ClientSession() as session:
async with session.post(‘https://api1.example.com/endpoint’, json=data) as response:
result = await response.json()
return result

async def call_api_2(data):
async with aiohttp.ClientSession() as session:
async with session.post(‘https://api2.example.com/endpoint’, json=data) as response:
result = await response.json()
return result

async def process_data(data_list):
results = []
for i, data in enumerate(data_list):
if i % 2 == 0:
result = await call_api_1(data)
else:
result = await call_api_2(data)
results.append(result)
return results

async def main():
data_list = [{“input”: “data1”}, {“input”: “data2”}, {“input”: “data3”}, {“input”: “data4”}]
results = await process_data(data_list)
for i, result in enumerate(results):
print(f"Result from API {1 if i % 2 == 0 else 2}: {result}")

运行主函数

asyncio.run(main())

### Python 中 `async` 关键字及其应用 #### 定义与作用 在 Python 编程语言中,`async` 和 `await` 是用于异步编程的关键字,自 Python 3.5 版本起引入。这两个关键字旨在简化并发编程流程,使编写的异步代码更接近于同步风格的代码结构,但在实际运行过程中并不会造成线程阻塞,进而提升程序效率特别是处理 I/O 密集型任务时的表现[^3]。 #### 基础语法说明 当定义一个函数为协程(coroutine),即允许其内部暂停并稍后恢复的能力,则需在其前加上 `async def` 来声明该函数为异步形式。而要等待某个操作完成再继续执行后续指令的地方则应使用 `await` 表达式来实现这一点。需要注意的是只有处于另一个已经标记为 `async` 的上下文中才能合法地调用带有 `await` 的语句[^1]。 #### 实际案例分析 考虑如下一段展示如何利用 `async/await` 构建基本异步行为模式的例子: ```python import asyncio async def say_after(delay, message): await asyncio.sleep(delay) print(message) async def main(): start_time = asyncio.get_running_loop().time() # 并发启动两个say_after协程实例 task1 = asyncio.create_task(say_after(1, 'hello')) task2 = asyncio.create_task(say_after(2, 'world')) # 等待两者都完成后才结束main() await task1 await task2 end_time = asyncio.get_running_loop().time() print(f"Total elapsed time: {end_time-start_time:.2f} seconds") # 运行事件循环直至main()返回结果 asyncio.run(main()) ``` 上述脚本展示了通过创建独立的任务(`task`)对象来进行多个异步动作的同时发起,并最终收集它们的结果后再做进一步处理的方式。这里还特别强调了从 Python 3.7 开始推荐使用的 `create_task()` 方法替代旧版本里的 `ensure_future()` 接口[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值