关于4猪重量问题

博客探讨了一个有趣的数学问题,涉及4头整数重量的猪。通过分析两两组合的重量,找出未曾一起称重的两头猪的较重重量。解析中提到,无法直接通过设未知数来确定,但通过观察重量差可以解决问题。最终确定未一起称的两头猪中较重的一头重66千克。
摘要由CSDN通过智能技术生成

问题描述

有4头猪,这四头猪的重量都是整千克数,把这四头猪两两合称体重,共称5次,分别是99、113、125、130、144千克,其中有两头猪没有一起称过。那么,这两头猪重量较重那头有多重?

难点

通过设未知数,无法确定未知数的组合对应于哪些给定的数。

解析

  1. 设四头猪对应的四个重量分别是x,y,z,m。
  2. 不妨令x+m为未称的两个重量,则已经称过的重量组合为x+y,x+z,y+z,y+m,z+m
  3. 由于哪一组对应于那个数字并不能确定,故通过排列组合有AA__{5}^{5}=120种可能方程组,显然利用穷举不可行。 
  4. 观察2中的五个组合,我们可以发现(x+y)-(x+z)=y-z;(y+m)-(z+m)=y-z;还有y+z没利用
  5.  

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值