问题描述
有4头猪,这四头猪的重量都是整千克数,把这四头猪两两合称体重,共称5次,分别是99、113、125、130、144千克,其中有两头猪没有一起称过。那么,这两头猪重量较重那头有多重?
难点
通过设未知数,无法确定未知数的组合对应于哪些给定的数。
解析
- 设四头猪对应的四个重量分别是x,y,z,m。
- 不妨令x+m为未称的两个重量,则已经称过的重量组合为x+y,x+z,y+z,y+m,z+m
- 由于哪一组对应于那个数字并不能确定,故通过排列组合有A=120种可能方程组,显然利用穷举不可行。
- 观察2中的五个组合,我们可以发现还有y+z没利用