SVN 结版

项目结版详细步骤(SVN ):

  1. 首先svn中有三个目录branches、tags、trunk
  • branches
  • tags – 存放结版项目的目录
  • trunk – 正常代码提交目录
    在这里插入图片描述
  1. 把三个目录都拉到本地
    在这里插入图片描述
  2. 在trunk(trunk -》 sources -》 项目文件夹xxx)中选中要结版的项目,右击选择SVN -》 分支标记
    在这里插入图片描述
  3. 在tags目录中创建文件夹(1.20190813.1)并添加到svn中
  4. 在至路径中填写路径(/tags/1.20190813.1/xxx项目文件夹名)
  5. 在日志信息中填写1.20190813.1 代码结版
    在这里插入图片描述
  6. 在tags目录经进行更新操作结版代码就会出现了!
内容概要:本文详细介绍了一个基于MATLAB实现的SWT-SVM故障诊断分类预测项目,通过平稳小波变换(SWT)进行信号去噪与多尺度特征提取,合支持向量机(SVM)实现机械设备故障的智能分类。项目涵盖从数据采集、预处理、SWT分解、特征提取与降维(如PCA)、模型训练与优化(含交叉验证、网格搜索、贝叶斯优化)、性能评估(混淆矩阵、ROC曲线、F1分数等)到果可视化与GUI界面开发的完整流程。系统具备高可解释性、强鲁棒性和良好工程集成能力,适用于多行业设备健康监测,并提供完整的代码实现与部署方案。; 适合人群:具备一定MATLAB编程基础,熟悉信号处理与机器学习算法的高校研究生、科研人员及工业领域从事设备故障诊断、智能运维的工程师和技术人员。; 使用场景及目标:①应用于智能制造、风电、轨道交通、石化、航空航天等领域的设备故障早期检测与健康状态评估;②构建端到端的智能诊断pipeline,提升诊断准确率与自动化水平;③通过GUI交互界面实现数据导入、模型训练、实时预测与果导出,服务于科研教学与工业实际部署。; 阅读建议:建议读者合文中提供的完整MATLAB代码与GUI设计,逐步复现各模块功能,重点关注SWT参数选择、特征降维策略、SVM超参数优化及模型评估方法。在实践过程中调试信号处理流程与分类性能,深入理解算法原理与工程落地的关键环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qumy97

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值