题目描述:
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
示例1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
提示:
- 所有节点的值都是唯一的。
- p、q 为不同节点且均存在于给定的二叉搜索树中。
解题思路:
1、后序遍历 + 递归:
可以后序遍历查找p、q节点,首先递归遍历左子树,在左子树中查找p和q节点,如果左子树中存在p或q节点,则返回该节点,否则返回null,返回的结果记为left
;然后递归遍历右子树,过程和遍历左子树一样,返回的结果记为right
。
(1)当left == null
,说明左子树中没有p和q节点,返回right(这种情况下如果right == null
,说明左右子树中都没有p和q节点,返回null);
(2)当right == null
,说明右子树中没有p和q节点,返回right(这种情况下如果left == null
,说明左右子树中都没有p和q节点,返回null);
(3)当left != null && right != null
时,说明p和q节点在root的异侧,这种情况下root为最近公共祖先,返回root。
递归终止条件: 当root == null || root == p || root == q
,返回root。
时间复杂度和空间复杂度: 时间复杂度为O(N),空间复杂度为O(N)。
实现代码:
//解法1: 后序遍历 + 递归
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root == null || root == p || root == q)
return root;
//后序遍历查找p、q节点
TreeNode left = lowestCommonAncestor(root.left, p, q);
TreeNode right = lowestCommonAncestor(root.right, p, q);
//如果left为空,说明p、q节点在root结点的右子树,我们只需要返回右子树查找的结果即可
if(left == null)
return right;
//同上
if(right == null)
return left;
//如果left和right都不为空,说明p、q节点一个在root的左子树,一个在root的右子树
//我们只需要返回root结点即可。
return root;
}