题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
斐波那契数列
代码实现
我们定义斐波那契数列从0号位置开始依次为 0 , 1 , 1 , 2 , 3... {0,1,1,2,3...} 0,1,1,2,3...
/**
* @Classname Solution
* @Description 跳台阶
* @Date 2019/12/17 16:55
* @Created by SonnSei
*/
public class Solution {
public int JumpFloor(int target) {
return fib(target + 1);
}
public static int fib(int n) {
if (n < 1) return 0;
if (n == 1 || n == 2)
return 1;
int a = 1,b = 1;
int ret = a+b;
for (int i = 3; i <= n; i++) {
ret = a+b;
a =b;
b = ret;
}
return ret;
}
}
复杂度分析
上面的代码是斐波那契数列的动态规划解法配合空间优化,时间复杂度是 O ( n ) {O(n)} O(n),空间复杂度是常数级