题目描述
n 个小朋友站成一排。现在要把他们按身高从低到高的顺序排列,但是每次只能交换位置相邻的两个小朋友。
每个小朋友都有一个不高兴的程度。开始的时候,所有小朋友的不高兴程度都是0。
如果某个小朋友第一次被要求交换,则他的不高兴程度增加1,如果第二次要求他交换,则他的不高兴程度增加2(即不高兴程度为3),依次类推。当要求某个小朋友第k次交换时,他的不高兴程度增加k。
请问,要让所有小朋友按从低到高排队,他们的不高兴程度之和最小是多少。
如果有两个小朋友身高一样,则他们谁站在谁前面是没有关系的。
样例说明
首先交换身高为3和2的小朋友,再交换身高为3和1的小朋友,再交换身高为2和1的小朋友,每个小朋友的不高兴程度都是3,总和为9。
数据规模和约定
对于100%的数据,1< =n< =100000,0< =Hi< =1000000。
输入
输入的第一行包含一个整数n,表示小朋友的个数。
第二行包含 n 个整数 H1 H2 … Hn,分别表示每个小朋友的身高。
输出
输出一行,包含一个整数,表示小朋友的不高兴程度和的最小值。
样例输入
3 3 2 1
样例输出
9
这道题目测可以看出来 他需要交换的次数 应该是左边比a[i]高的人数 加上 右边比a[i]低的人数 。然后通过交换的次数和等差数列计算出第i个人的不高兴程度。 最后加上每一个人的不高兴程度就可以了。
如何快速查询出前i-1个人中有多少人的高度大于第i个人呢?我们可以用树状数组去维护。复杂度log(n)。因为a[i]的范围小于1000000。我们可以开一个1000005的数组来记录一下高度为b[i]有多少个人。这样的话前i个人中比第i个人的高的人数就是i-sum(a[i]). sum(x)就是求b[1] - b[x] 的人数有多少个。maxn 我们在输入n个人高度 的时候维护一个最高点。 求i+1 - n个人中比i小的人数也是同理。但是求的应该是sum(a[i]-1); for循环从n --> 1。
值得注意的是a[i]的高度可能为0 但是树状数组维护的1-x 而不是 0-x 那怎么办呢? 很显然我们可以使每一个人的高度+1。对结果是没有影响的。
代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+10;
int a[maxn];
int sum[maxn];//树状数组
int maxs = 0;
int js[maxn];//计数用的 记录左边有多少个比a[i]高的人 + 右边有多少个比a[i]低的人。
typedef long long LL;
int lb(int x)
{
return x & -x;
}
void add(int x,int val)
{
while(x <= maxs)
{
sum[x] += val;
x+=lb(x);
}
}
int sums(int x)
{
int ans = 0;
while(x)
{
ans += sum[x];
x-=lb(x);
}
return ans;
}
LL cal(int x)//等差数列公式
{
return (LL)(1 + js[x]) * (js[x]) / 2;
}
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
a[i] = a[i]+1;
maxs = max(maxs,a[i]);//求一下最大高度的人。树状数组维护的时候用。。
}
int num = 0;
for(int i=1;i<=n;i++)
{
add(a[i],1);
js[i] = i - sums(a[i]);
}
memset(sum,0,sizeof(sum));//重置树状数组所有数为0 因为下面要计算第i个人右边有多少比第i个人低的。
num = 0;
for(int i=n;i>=1;i--)
{
add(a[i],1);
js[i] = js[i] + sums(a[i]-1);
}
LL ans = 0;
for(int i=1;i<=n;i++)
{
ans += cal(i);
}
cout<<ans<<endl;
return 0;
}