蓝桥杯--连号区间和

本文探讨了一种算法,旨在解决将一组具有不同高度的小朋友按升序排列的问题,同时尽量减少因位置交换引起的不高兴程度总和。通过使用树状数组进行高效查询和更新,该算法能够快速确定每个小朋友在排序过程中需要经历的交换次数,从而计算出最小的不高兴程度总和。
摘要由CSDN通过智能技术生成

题目描述

n  个小朋友站成一排。现在要把他们按身高从低到高的顺序排列,但是每次只能交换位置相邻的两个小朋友。 

每个小朋友都有一个不高兴的程度。开始的时候,所有小朋友的不高兴程度都是0。 

如果某个小朋友第一次被要求交换,则他的不高兴程度增加1,如果第二次要求他交换,则他的不高兴程度增加2(即不高兴程度为3),依次类推。当要求某个小朋友第k次交换时,他的不高兴程度增加k。 

请问,要让所有小朋友按从低到高排队,他们的不高兴程度之和最小是多少。 

如果有两个小朋友身高一样,则他们谁站在谁前面是没有关系的。 

样例说明 
首先交换身高为3和2的小朋友,再交换身高为3和1的小朋友,再交换身高为2和1的小朋友,每个小朋友的不高兴程度都是3,总和为9。 
数据规模和约定 
对于100%的数据,1< =n< =100000,0< =Hi< =1000000。 

输入

输入的第一行包含一个整数n,表示小朋友的个数。 
第二行包含  n  个整数  H1  H2  …  Hn,分别表示每个小朋友的身高。

输出

输出一行,包含一个整数,表示小朋友的不高兴程度和的最小值。

样例输入

3 
3  2  1 

样例输出

9

这道题目测可以看出来 他需要交换的次数 应该是左边比a[i]高的人数 加上 右边比a[i]低的人数 。然后通过交换的次数和等差数列计算出第i个人的不高兴程度。 最后加上每一个人的不高兴程度就可以了。

如何快速查询出前i-1个人中有多少人的高度大于第i个人呢?我们可以用树状数组去维护。复杂度log(n)。因为a[i]的范围小于1000000。我们可以开一个1000005的数组来记录一下高度为b[i]有多少个人。这样的话前i个人中比第i个人的高的人数就是i-sum(a[i]). sum(x)就是求b[1] - b[x] 的人数有多少个。maxn 我们在输入n个人高度 的时候维护一个最高点。 求i+1 - n个人中比i小的人数也是同理。但是求的应该是sum(a[i]-1); for循环从n --> 1。

值得注意的是a[i]的高度可能为0 但是树状数组维护的1-x 而不是 0-x  那怎么办呢?  很显然我们可以使每一个人的高度+1。对结果是没有影响的。

 

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+10;
int a[maxn];
int sum[maxn];//树状数组
int maxs = 0;
int js[maxn];//计数用的 记录左边有多少个比a[i]高的人 + 右边有多少个比a[i]低的人。
typedef long long LL;
int lb(int x)
{
    return x & -x;
}
void add(int x,int val)
{
    while(x <= maxs)
    {
        sum[x] += val;
        x+=lb(x);
    }
}
int sums(int x)
{
    int ans = 0;
    while(x)
    {
        ans += sum[x];    
        x-=lb(x);
    }
    return ans;
}
LL cal(int x)//等差数列公式
{
    return (LL)(1 + js[x]) * (js[x]) / 2;
}
int main()
{
    int n;
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>a[i];
        a[i] = a[i]+1;
        maxs = max(maxs,a[i]);//求一下最大高度的人。树状数组维护的时候用。。
    }
    int num = 0;
    for(int i=1;i<=n;i++)
    {
        add(a[i],1);
        js[i] =  i - sums(a[i]);
    }
    memset(sum,0,sizeof(sum));//重置树状数组所有数为0 因为下面要计算第i个人右边有多少比第i个人低的。
    num = 0;
    for(int i=n;i>=1;i--)
    {
        add(a[i],1);
        js[i] = js[i] + sums(a[i]-1);
    }
    LL ans = 0;
    for(int i=1;i<=n;i++)
    {
        ans += cal(i);
    }
    cout<<ans<<endl;
    return 0;
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值