- 博客(1)
- 收藏
- 关注
转载 对dropout的理解
dropout可以让模型训练时,随机让网络的某些节点不工作(输出置零),也不更新权重(但会保存下来,下次训练得要用,只是本次训练不参与bp传播),其他过程不变。我们通常设定一个dropout radio=p,即每个输出节点以概率p置0(不工作,权重不更新),假设每个输出都是独立的,每个输出都服从二项伯努利分布p(1-p),则大约认为训练时,只使用了(1-p)比例的输出,相当于每次训练一个子网络。测...
2019-07-25 21:44:44 909
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人