校园食堂明厨亮灶智能视频监控对餐厅摄像头拍照视频监控画面进行实时分析,校园食堂明厨亮灶智能视频监控针对厨师不穿厨师服、不戴厨师帽口罩、陌生人员进入后厨、厨师工作时间玩手机打电话、后厨出现猫狗老鼠等异常行为现象,系统会自动识别抓拍报警,进而实现食品卫生安全日常监管智慧化。

深度学习框架TensorFlow一经发布,就受到了广泛的关注,并在计算机视觉、音频处理、推荐系统和自然语言处理等场景下都被大面积推广使用,接下来我们深入浅出的介绍Tensorflow的相关应用。

TF托管在github平台,有google groups和contributors共同维护。
TF提供了丰富的深度学习相关的API,支持Python和C/C++接口。
TF提供了可视化分析工具Tensorboard,方便分析和调整模型。
TF支持Linux平台,Windows平台,Mac平台,甚至手机移动设备等各种平台。

校园食堂明厨亮灶智能视频监控 TesnorFlow_深度学习

开展“人工智能+明厨亮灶”确保学习餐厅后厨质量提升是餐饮业食品安全诚信体系建设的主要对策。各个院校以及幼稚园食堂十分重视,严格标准,保证按时完成“互联网技术明厨亮灶”改造工程。在这个过程中,认真梳理全校师生与学生家长反映的问题,不断提升院校和幼儿园食堂的食品安全水平。

# 创建int32类型的0维张量,即标量
rank_0_tensor = tf.constant(4)
print(rank_0_tensor)
# 创建float32类型的1维张量
rank_1_tensor = tf.constant([2.0, 3.0, 4.0])
print(rank_1_tensor)
# 创建float16类型的二维张量
rank_2_tensor = tf.constant([[1, 2],
                             [3, 4],
                             [5, 6]], dtype=tf.float16)
print(rank_2_tensor)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.

校园食堂明厨亮灶智能视频监控对食堂、餐厅厨房开展全天候7*24小时不间断监管分析,并且在行政服务中心集中展现违规画面信息。校园食堂明厨亮灶智能视频监控系统,及时识别发现后厨的各种违规行为及现场,提升职工规范化执行率,保证厨房食品卫生安全。