给你一个用字符数组 tasks 表示的 CPU 需要执行的任务列表。其中每个字母表示一种不同种类的任务。任务可以以任意顺序执行,并且每个任务都可以在 1 个单位时间内执行完。在任何一个单位时间,CPU 可以完成一个任务,或者处于待命状态。
然而,两个 相同种类 的任务之间必须有长度为整数 n 的冷却时间,因此至少有连续 n 个单位时间内 CPU 在执行不同的任务,或者在待命状态。
你需要计算完成所有任务所需要的 最短时间 。
示例 1:
输入:tasks = [“A”,“A”,“A”,“B”,“B”,“B”], n = 2
输出:8
解释:A -> B -> (待命) -> A -> B -> (待命) -> A -> B
在本示例中,两个相同类型任务之间必须间隔长度为 n = 2 的冷却时间,而执行一个任务只需要一个单位时间,所以中间出现了(待命)状态。
示例 2:
输入:tasks = [“A”,“A”,“A”,“B”,“B”,“B”], n = 0
输出:6
解释:在这种情况下,任何大小为 6 的排列都可以满足要求,因为 n = 0
[“A”,“A”,“A”,“B”,“B”,“B”]
[“A”,“B”,“A”,“B”,“A”,“B”]
[“B”,“B”,“B”,“A”,“A”,“A”]
…
诸如此类
示例 3:
输入:tasks = [“A”,“A”,“A”,“A”,“A”,“A”,“B”,“C”,“D”,“E”,“F”,“G”], n = 2
输出:16
解释:一种可能的解决方案是:
A -> B -> C -> A -> D -> E -> A -> F -> G -> A -> (待命) -> (待命) -> A -> (待命) -> (待命) -> A
提示:
1 <= task.length <= 10^4
tasks[i] 是大写英文字母
n 的取值范围为 [0, 100]
解法:构造&桶思想
参考:指路
解题思路:
我们设计桶的大小为 n+1,则相同的任务恰好不能放入同一个桶,最密也只能放入相邻的桶。
对于重复的任务,我们只能将每个都放入不同的桶中,因此桶的个数就是重复次数最多的任务的个数。
一个桶不管是否放满,其占用的时间均为 n+1,这是因为后面桶里的任务需要等待冷却时间。最后一个桶是个特例,由于其后没有其他任务需等待,所以占用的时间为桶中的任务个数。
最终我们得到:
总排队时间 = (桶个数 - 1) * (n + 1) + 最后一桶的任务数
最后,当任务重复率很低时,计算得到的桶个数很少。但由于任务很多,可能出现桶不够用的情况。此时可以假想在最后一桶之后又补充了很多个桶,且所有的桶均装满,因此任务的总等待时间即为任务的总个数。
图解:
建立大小为 n+1 的桶子(宽度),个数为任务数量最多的那个任务(高度)。
代码实现:
class Solution:
def leastInterval(self, tasks: List[str], n: int) -> int:
vec = [0] * 26
for task in tasks:
vec[ord(task)-ord('A')] += 1
vec.sort(reverse=True) # vec[0]:最多的执行次数
cnt = 1
while cnt < len(vec) and vec[cnt] == vec[0]:
cnt += 1 # 并列最多的任务的任务数量,即最后一个桶的任务数
return max(len(tasks), (vec[0] - 1) * (n + 1) + cnt)