【Streamlit学习】初识Streamlit

Streamlit是一个免费的开源框架,用于快速构建和共享漂亮的机器学习和数据科学Web应用程序。它是一个基于Python的库,专为机器学习工程师设计。数据科学家或机器学习工程师不是网络开发人员,他们对花几周时间学习使用这些框架来构建网络应用程序不感兴趣。相反,他们需要一个更容易学习和使用的工具,只要它可以显示数据并收集建模所需的参数。Streamlit允许您仅用几行代码创建一个外观惊艳的应用程序。

一、导入并运行Streamlit

①导入Streamlit

import streamlit as st

②运行 Streamlit

  • 使用run xx.py运行应用,这会在你的默认浏览器中开启一个新的tab页。
    streamlit run my.py
  • 也可以用streamlit run一个URL让它来启动应用。
    streamlit run https://raw.githubusercontent.com/streamlit/demo-uber-nyc-pickups/master/app.py

③终止运行

可以使用ctrl+c来终止streamlit应用的运行。 

二、添加应用标题

st.title("My app")

 三、向页面添加数据

①使用st.write()方法

你可以把任何东西丢给st.write(): 文本、数据、Matplotlib图表、Altair图表等等。别担心,Streamlit可以 自动识别数据类型并正确绘制。

import streamlit as st
import pandas
st.title("My app")

st.write("Here's our first attempt at using data to create a table:")
st.write(pandas.DataFrame({
    'first column': [1, 2, 3, 4],
    'second column': [10, 20, 30, 40]
}))

 ②Python3.x中的魔术方法

在python3中, Streamlit支持魔术方法,比如使用下面的代码也可以取得相同的效果。

import streamlit as st
import pandas


"""
# My first app
Here's our first attempt at using data to create a table:
"""

df = pandas.DataFrame({
  'first column': [1, 2, 3, 4],
  'second column': [10, 20, 30, 40]
})

df

四、Streamlit的数据流

Streamlit服务器会监听文件变化并自动刷新应用界面。在Streamlit内部,每次保存时都会从头到尾完整运行整个Python脚本,这是因为st.cache在默默起着作用。这意味着Steamlit允许你以快速交互循环方式工作:你输入一些代码,保存,输入更多代码,保存,周而复始直到你对应用的表现感到满意。 基本的思路就是使用Streamlit作为你理解代码、调试代码、完善代码 并最终分享成果的地方

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值