1、缓存穿透的原因:
不合理的缓存失效策略:比如设置了大量缓存在同一时间点失效,那么将导致大量缓存数据在同一时刻发生缓存穿透,业务请求直接打到持久化存储层。
外部用户的恶意攻击:外部恶意用户利用不存在的 Key,来构造大批量不存在的数据请求我们的服务,由于缓存中并不存在这些数据,因此海量请求全部穿过缓存,落在数据库中,将导致数据库崩溃。
2、缓存的穿透的避免方式:
通过缓存空数据:在查询的时候数据库返回空,则在缓存中存储一个为null的key。再次查询的时候就会通过缓存直接判断,避免多次访问数据库。
布隆过滤器:布隆过滤器是应用非常广泛的一种数据结构。使用布隆过滤器,可在缓存前添加一层过滤,布隆过滤器映射到缓存,在缓存中不存在的数据,会在布隆过滤器这一层拦截,从而保护缓存和数据库的安全。(它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。)
3、缓存击穿的原因:
前端请求大量的访问某个热点 Key,而这个热点 Key 在某个时刻恰好失效,导致请求全部落到数据库上。
说明:缓存击穿和缓存穿透都是降低了整体的缓存命中率,不过在表现上比较类似。缓存击穿可以认为是缓存穿透的一种特殊场景,所以在解决方案上也可以应用上面提到的那几种手段。
4、缓存雪崩原因:
在大批量请求时,大量的缓存数据同时失效,导致大批量的请求直接访问数据库,数据库压力过大,服务宕机。
缓存服务不稳定,缓存服务的集群出现宕机。
5、缓存雪崩的避免:
首先是明确缓存集群的容量峰值,通过合理的限流和降级,防止大量请求直接拖垮缓存;
其次是做好缓存集群的高可用,以 Redis 为例,可以通过部署 RedisCluster、Proxy 等不同的缓存集群,来实现缓存集群高可用。
6、思考:
首先明确应用缓存的目的:大部分缓存都是内存数据库,并且可以支持非常高的 QPS,所以缓存应用,可以防止海量业务请求击垮数据库,保护正常的服务运行。
其次,在考虑缓存的稳定性时,要从两个方面展开,第一个是缓存的数据,第二个是缓存容器也就是缓存服务本身的稳定性。
从缓存数据的层面,有一个缓存命中率的概念,是指落到缓存上的请求占整体请求总量的占比。缓存命中率在电商大促等场景中是一个非常关键的指标,我们要尽可能地提高缓存数据的命中率,一般要求达到 90% 以上,如果是大促等场景,会要求 99% 以上的命中率。
从缓存服务的层面,缓存集群本身也是一个服务,也会有集群部署,服务可用率,服务的最大容量等。在应用缓存时,要对缓存服务进行压测,明确缓存的最大水位,如果当前系统容量超过缓存阈值,就要通过其他的高可用手段来进行调整,比如服务限流,请求降级,使用消息队列等不同的方式。