神经网络
leetteel
西安交通大学硕士
展开
-
BP神经网络(Python语言描述)
import mathimport randomimport numpy as npimport pandas as pdrandom.seed(0)def rand(a, b): return (b - a) * random.random() + adef make_matrix(m, n, fill=0.0): mat = [] for i in range(m): mat.append([fill] * n) return mat原创 2021-01-16 21:54:27 · 463 阅读 · 1 评论 -
BAM 能量函数递减证明
原创 2021-01-16 20:42:03 · 349 阅读 · 0 评论 -
BAM
%%2017-12-18%%KOSKOBAMclear;clc;%%%%%两组数据%%%%%%%%%%%%%A1 = [1; -1; 1; -1; 1; -1; 1; -1; 1; -1; 1; -1; 1; -1; 1];A2 = [1; 1; -1; -1; 1; 1; -1; -1; 1; 1; -1; -1; 1; 1; -1];A3 = [1; 1; 1; -1; -1; -1; 1; 1; 1; -1; -1; -1; 1; 1; 1];A4 = [1; 1; 1; 1; -1;原创 2021-01-14 20:26:53 · 108 阅读 · 0 评论 -
BP神经网络的应用(1)——T-C辨识问题
import matplotlib.pyplot as pltimport matplotlib.patches as patchesimport numpy as npc1 = input('请选择T或者C:')if c1 == 'T': x1 = [4, 4, 4, 5, 6] y1 = [1, 2, 3, 2, 2]else: x1 = [1, 1, 1, 2, 2] y1 = [0, 1, 2, 0, 2]ax = plt.axes([0.025, 0.0原创 2021-01-14 15:36:48 · 340 阅读 · 1 评论 -
采用硬限幅函数的前向多层神经网络
import numpy as npfrom matplotlib import pyplot as pltimport randomplt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文标签plt.rcParams['axes.unicode_minus'] = Falsedef yxf(x): if x >= 0: return 1 else: return 0def juzheng原创 2021-01-07 22:03:30 · 289 阅读 · 2 评论 -
采用硬限幅函数时单个神经元的分类功能
目录静态神经元模型的三种变换函数采用硬限幅函数时单个神经元的分类功能代码求解结果结论静态神经元模型的三种变换函数采用硬限幅函数时单个神经元的分类功能代码import numpy as npfrom matplotlib import pyplot as pltimport randomplt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文标签plt.rcParams['axes.unicode_minus'] = False原创 2021-01-07 10:41:12 · 329 阅读 · 0 评论 -
双向联想记忆
实验原理原创 2020-12-27 08:30:43 · 440 阅读 · 0 评论 -
LMS算法
目录目录实验原理LMS学习问题的严格递推学习算法LMS学习问题的随机逼近算法LMS学习问题的基于统计的算法实验内容目录实验原理LMS学习问题的严格递推学习算法LMS学习问题的随机逼近算法LMS学习问题的基于统计的算法实验内容...原创 2020-12-26 15:46:15 · 605 阅读 · 0 评论 -
Hopefield网络求解线性方程组
D=[1,1;2,4]; B=[10,32]'; u0=[0,0]'; alpha=10; beta=10; deltat=0.0001; maxN=100000; V=u0; phi=u0; deltaut=0.0001; deltau=10; for k=1:maxN V=beta*u0; phi=alpha*(D*V-B); u1=(1-deltaut)*u0-deltaut*D'*phi; tmp=u1-u0; deltau=.原创 2020-12-25 19:39:29 · 248 阅读 · 0 评论 -
Python神经网络(1)————训练简单的分类器
代码:from matplotlib import pyplot as pltx1 = [(3, 1), (1, 3)]k = 0.25 # 初始值item = 0L = 0.5 # 学习率error = 1 # 误差值k_record = []while error > 0.0001:原创 2020-11-16 22:08:45 · 205 阅读 · 0 评论