厨亮灶监控系统可以识别厨师帽厨师服的穿戴识别,不戴口罩识别,餐厅厨房抽烟识别,后厨出现老鼠识别报警,发现陌生人进入后厨行为及时警报并将报警信息同步给相关工作人员的手机上,协助餐厅厨房工作员提高标准意识。“人工智能厨房”借助传统监控摄像头、视频传输和显示等视频监控手段,将后厨重地透明化,让消费者直接监督餐饮食品加工制作的过程,提升后厨工作人员的安全合规意识。

在CNN出现之前,对于图像的处理一直都是一个很大的问题,一方面因为图像处理的数据量太大,比如一张512 x 512的灰度图,它的输入参数就已经达到了252144个,更别说1024x1024x3之类的彩色图,这也导致了它的处理成本十分昂贵且效率极低。另一方面,图像在数字化的过程中很难保证原有的特征,这也导致了图像处理的准确率不高。

而CNN网络能够很好的解决以上两个问题。对于第一个问题,CNN网络它能够很好的将复杂的问题简单化,将大量的参数降维成少量的参数再做处理。也就是说,在大部分的场景下,我们使用降维不会影响结果。比如在日常生活中,我们用一张1024x1024x3表示鸟的彩色图和一张100x100x3表示鸟的彩色图,我们基本上都能够用肉眼辨别出这是一只鸟而不是一只狗。这也是卷积神经网络在图像分类里的一个重要应用。

明厨亮灶监控系统 CNN_机器学习

在人工智能视频分析识别技术的支持下,明厨亮灶融合可视化服务科技化设计理念,依据多种渠道直播流的即时监控系统,让消费者吃得更放心,进而变成店家品牌推广的窗口,不仅仅响应了中国现阶段加强食品安全现行政策的号召,提升了顾客的信赖感,还通过更生动、更有意义的营销方法提升品牌形象,造成更加好的经济收益。

import torch
from torch import nn
from d2l import torch as d2l


class Reshape(torch.nn.Module):
    def forward(self, x):
        # 通过view函数把图像展成标准的Tensor接收格式,即(样本数量,通道数,高,宽)
        return x.view(-1, 1, 28, 28)

net = torch.nn.Sequential(
    Reshape(),
    # 第一个卷积块,这里用到了padding=2
    nn.Conv2d(1, 6, kernel_size=5, padding=2), 
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    
    # 第二个卷积块
    nn.Conv2d(6, 16, kernel_size=5), 
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    
    # 稠密块(三个全连接层)
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.

明厨亮灶监控系统能够更早发现餐厅后厨不穿厨师服,不佩戴口罩,不戴厨师帽,不戴手套,抽烟,玩手机,陌生人进入等违规问题,进行ai智能检测和预警提醒,提升后厨管理高效率,减少工作监管成本,有效解决以往后厨监督管理不到位,效率低,成本费相对比较高。