sklearn库之sklearn.cluster.KMeans的学习

这篇呢是接着上一篇kmeans的学习,这篇主要是介绍调用机器学习的库来使用集成的kmeans ,哈哈会调用就行,主要学习呢就是看官方文档,学习这个包装类的参数,返回值以及它方法,这里面有好多examples,大家可以尝试下。

下面是我练习时的代码:

#-*- coding:utf-8 -*-
from sklearn.cluster import KMeans
#from sklearn.cluster import k_means#这个是先写的,他们两的参数就相差一个数据集,不过还是建议用KMeans
import numpy as np
from sklearn.datasets import load_iris


def loadData(filePath):

    dataSet = []
    file = open(filePath, 'r')

    for lines in file.readlines():
        row = []
        # curLine = lines.strip().split()#2维数据
        curLine = lines.strip().split(',')
        for line in curLine:
            x = float(line)
            row.append(x)

        dataSet.append(row)
    file.close()

    return np.mat(dataSet)



if __name__ == '__main__':

    # filePath = '../data/training_4k2_far.txt'
    filePath = '../data/iris.txt'
    dataSet = loadData(filePath)

    # print dataSet
    '''直接调用sklearn中的数据'''
    # dataSet = load_iris().data
    estimator = KMeans(n_clusters=4, max_iter=300, n_init=10).fit(dataSet)#构造聚类器
    '''这个是必须写的,相当于上面构造出来,配置好,下面这句调用,当然也可以写到上面去
    fit方法对数据做training 并得到模型'''
    # estimator.fit(dataSet)#聚类

    #下面是三个属性
    '''把聚类的样本打标签'''
    labelPred = estimator.labels_
    '''显示聚类的质心'''
    centroids =estimator.cluster_centers_
    '''这个也可以看成损失,就是样本距其最近样本的平方总和'''
    inertia = estimator.inertia_

    print labelPred
    print centroids
    print inertia
    #这下面是库里包装的方法
    '''返回预测的样本属于的类的聚类中心'''
    print estimator.fit_predict(dataSet)
    print estimator.predict(dataSet)
    '''这个是返回每个样本与聚类质心的距离'''
    print estimator.fit_transform(dataSet)
    print estimator.transform(dataSet)
    '''这个我觉得和损失一样,评价聚类好坏'''
    print estimator.score(dataSet)

使用sklearn库,代码很短也就几行,使用非常方便,当然也有很多大牛对库中的源码解读,谢谢大家!


本程序是在python中完成,基于sklearn.cluster中的k-means聚类包来实现数据的聚类,对于里面使用的数据格式如下:(注意更改程序中的相关参数) 138 0 124 1 127 2 129 3 119 4 127 5 124 6 120 7 123 8 147 9 188 10 212 11 229 12 240 13 240 14 241 15 240 16 242 17 174 18 130 19 132 20 119 21 48 22 37 23 49 0 42 1 34 2 26 3 20 4 21 5 23 6 13 7 19 8 18 9 36 10 25 11 20 12 19 13 19 14 5 15 29 16 22 17 13 18 46 19 15 20 8 21 33 22 41 23 69 0 56 1 49 2 40 3 52 4 62 5 54 6 32 7 38 8 44 9 55 10 70 11 74 12 105 13 107 14 56 15 55 16 65 17 100 18 195 19 136 20 87 21 64 22 77 23 61 0 53 1 47 2 33 3 34 4 28 5 41 6 40 7 38 8 33 9 26 10 31 11 31 12 13 13 17 14 17 15 25 16 17 17 17 18 14 19 16 20 17 21 29 22 44 23 37 0 32 1 34 2 26 3 23 4 25 5 25 6 27 7 30 8 25 9 17 10 12 11 12 12 12 13 7 14 6 15 6 16 12 17 12 18 39 19 34 20 32 21 34 22 35 23 33 0 57 1 81 2 77 3 68 4 61 5 60 6 56 7 67 8 102 9 89 10 62 11 57 12 57 13 64 14 62 15 69 16 81 17 77 18 64 19 62 20 79 21 75 22 57 23 73 0 88 1 75 2 70 3 77 4 73 5 72 6 76 7 76 8 74 9 98 10 90 11 90 12 85 13 79 14 79 15 88 16 88 17 81 18 84 19 89 20 79 21 68 22 55 23 63 0 62 1 58 2 58 3 56 4 60 5 56 6 56 7 58 8 56 9 65 10 61 11 60 12 60 13 61 14 65 15 55 16 56 17 61 18 64 19 69 20 83 21 87 22 84 23 41 0 35 1 38 2 45 3 44 4 49 5 55 6 47 7 47 8 29 9 14 10 12 11 4 12 10 13 9 14 7 15 7 16 11 17 12 18 14 19 22 20 29 21 23 22 33 23 34 0 38 1 38 2 37 3 37 4 34 5 24 6 47 7 70 8 41 9 6 10 23 11 4 12 15 13 3 14 28 15 17 16 31 17 39 18 42 19 54 20 47 21 68 22
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值