笔记
文章平均质量分 78
梦飞小梦
嵌入式技术开发者
展开
-
openmv底层算法剖析---梦飞openmv前传
由于openmv是顺序执行,先解析python代码,再调用C函数,由于sensor图像采集一般为RGB565的图像或者YUV的图像,要处理成算法直接能运行的图像,需要作一些图像格式转换,这部分图像采集和转换处理做了单缓存,双缓存,和三缓存优化,使得图像采集速度更快,并在DCMI中断中做图像格式变换,以及图像拷贝操作,最大程度提升图像前处理的效率,使得采集出来的图像直接进入算法处理环节;在传统算法性能上,openmv运行的传统图像处理和图像识别算法确实具备很大的优势,前面也分析了其算法优化的策略和实现;原创 2022-12-28 17:03:44 · 5081 阅读 · 1 评论 -
STM32 IO口直接采集无FIFO摄像头方法总结
1.概述采用无数字口的单片机采集摄像头数据,通过模拟摄像头的采集时序进行图像采集,采集速度完全取决于单片机IO口的翻转速度和CPU处理速度;硬件:stm32f401/411/405,M4内核,带DSP/FPU单精度浮点运算单元,当然F103也是用,但不建议用F103,因为RAM资源和内核,主频等等都跟不上,性能太差没有实际意义;摄像头以OV7670无FIFO为例,最大像素640x480;2.采集原理(1)摄像头时序:PCLK :像素时钟,一个像素时钟出一个8bit数据XCLK:摄像头外部时钟,原创 2022-01-12 17:13:32 · 2681 阅读 · 4 评论 -
基于stm32的简单车牌识别原理
1.车牌识别基本原理本文讲述的是基于stm32单片机的车牌识别原理,包括车牌图像定位,字符分割,字符归一化处理,以及模板匹配等操作,当然如果芯片处理性能足够还可以加入旋转矫正,多车牌处理等,本文尽量采用最简单易懂的方法进行图像分割处理,同时加快处理速度。首先,讲一讲网络上大部分stm32F103车牌识别的硬件和软件实现,硬件采用的是stm32f103rct6+OV7670&FIFO+16bit并口LCD屏;72M主频,不支持浮点运算等操作;软件实现过程大致如下:(1)OV7670带FIFO摄原创 2021-12-30 11:55:19 · 9048 阅读 · 1 评论 -
STM32F4图像识别
一、硬件介绍(1)主芯片采用STM32F4主控,支持单精度浮点运算,芯片硬件资源包括192KB内部RAM,512KB-1MB的FLASH(具体看芯片型号),采用分散内存架构128KB内部SRAM,64KB高速RAM,CPU可以直接访问此部分的内存(访问速度为CPU主频速度),因此通常采用内部SRAM图像采集和显示,采用CCM-RAM进行图像处理和识别,能充分发挥M4内核的优势.具有DCMI数字图像采集接口,直接采集并口摄像头图像并使用DMA传输,包含USB,PWM,USRT,SPI,I2C,CAN等众多外原创 2021-08-03 21:14:52 · 11087 阅读 · 6 评论 -
STM32F407二维码识别(使用内部RAM+无FIFO摄像头OV7670
STM32F407二维码识别(使用内部RAM+无FIFO摄像头OV7670要点:1.摄像头配置,无FIFO的摄像头需要注意时钟配置和窗口配置,否则不能出图像2.DCMI配置:DCMI需要配置成DMA传输模式和使用行场中断进行图像数据采集(使用帧中断也行,但是需要保证数据不会出错,数据buffer的地址不能搞错),同时需要注意DCMI硬件同步的行场信号以及像素信号的上升沿和有效电平3.RAM...原创 2020-08-05 17:01:53 · 3670 阅读 · 0 评论