一个公式三指标,电商分析的破局之道

本文探讨电商数据分析的进阶方法,通过销售额=UV*转化率*客单价公式,分析多维度多指标。从数据字段梳理、指标维度建立、数据清洗到结果指标分析,拆解转化率和订单创建量,最后通过多维度交叉分析,找到提升销售额的解题思路。案例中,通过省市销售额、转化率和产品销售情况,为业务优化提供依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者简介
HeoiJin:立志透过数据看清世界的产品策划,专注爬虫、数据分析、产品策划领域。
万物皆营销 | 资本永不眠 | 数据恒真理
CSDN:https://me.csdn.net/weixin_40679090

一、前言

失踪人口终于想起了他的博客账号密码(狗头)。在上一篇商业分析实战《只会环比下降3%的数据分析师还有救吗?》,我们用母婴产品的数据集,详解了多维度单指标如何进行分析。那么本篇将与大家探讨进阶版——多维度多指标的数据该如何进行分析。

二、项目准备

  • 语言:Python 3.7
  • IDE:Pycharm
  • 相关库:pandas 0.25.3、matplotlib 3.2.1、pyecharts 1.6.2、seaborn 0.10.0
  • 其他:chromedriver 83.0.4103.39、Edge 83.0.478.37
  • 分析框架:5w2h,销售额=UV*转化率*客单价

PS.

  • 老规矩代码仅展示核心知识点部分,源码和数据集在文末或阅读原文

三、了解数据,梳理指标

3.1 数据字段梳理

数据集来自“和鲸”的天猫订单综合分析,只有一个文件report.csv,包含7个字段,共28010条数据,具体字段为:

  • 订单编号
  • 总金额:订单总金额,假设每一单只购买一件商品,该字段视作为商品的标价
  • 买家实际支付金额:最终成交金额,分为已付款和未付款两种情况
    • 已付款情况下:买家实际支付金额 = 总金额 - 退款金额
    • 未付款情况下:买家实际支付金额 = 0
  • 收货地址:买家的收货地址,记录维度为省市,共记录了31个省市
  • 订单创建时间:2020年2月1日 至 2020年2月29日
  • 订单付款时间:2020年2月1日 至 2020年3月1日
  • 退款金额:付款后申请退款的金额,如果没有退款,退款金额为0

3.2 指标维度梳理

在天猫母婴商品的分析当中,仅销售量作为结果指标,所有的分析围绕这个结果指标即可。但通过上面的字段梳理可知,除了成交金额作为结果指标外,还有一系列的过程指标,那么就需要对指标间的关系做逻辑梳理。

这里我们引入电商的分析中最经典的公式:销售额 = UV * 转化率 * 客单价

  • 指标梳理:
    • UV:在本数据集中,没有客户id作为UV数据,但我们可以把订单创建数量作为UV的数据
    • 转化率:转化流程为订单创建 -> 订单付款 -> 订单成交 -> 订单全额成交
    • 客单价:平均每单的售价,在本数据集当中,亦可以理解为各个产品的销量情况
  • 维度梳理:
    • 时间维度:(周/日)订单创建/付款时间
    • 地域:各省市
    • 产品:假设每一种金额对应唯一的产品时,总金额便可以作为产品品类的标识

3.3 数据清洗理

进行处理之前,先通过info函数对数据情况进行初步了解

image-20200524165529698

观察可知,除订单付款时间之外,均没有缺失值。付款时间缺失的原因是用户在订单创建后跳失,缺失也是存在业务意义,暂不处理空值。

另外,订单创建时间和订单付款时间的格式是object,需转化为时间格式,方便后续操作。Demo:

df['订单创建时间']=pd.to_datetime(df['订单创建时间'])

四、先看结果指标,确定现状

对于任何商业组织及其行为,最终目的都是获利,而在不考虑成本的情况下,收入便是最重要的结果指标。在本数据集中,第一步自然是要知道销售额的情况。

实现方法:

  1. 以订单付款时间为分组条件,对买家实际支付金额求和
  2. 用matplotlib绘制折线图

从上图可得知几个重点信息:

  1. 整体的销售额为190万
  2. 4号出现局部峰值,5-8号持续型下降,每日成交额低于万级水平
  3. 10-16日共一周时间的销售额几乎低于千级,需要特别留意数据的真实性
  4. 17日后出现持续型增长,25日出现本月峰值

但仅凭上面的信息并不足以支撑决策,因此我们对案例增加些背景假设:

  1. 本月的销售额目标是220万
  2. 除10-16日之外,所有数据的采集均没有错误
  3. 10-16日的实际日均销售额为2万

在增加假设后,我们可以得知本月的真实销售额为200万,距离目标还差20万。接下来将从公式中的三个指标来拆解是什么环节出现问题,应该如何提升销售额。

五、拆解结果指标,进一步锁定问题

5.1 用户行为路径整体转化率

从字段梳理中可以得知用户行为路径为:订单创建 -> 订单付款 -> 订单成交 -> 订单全额成交。而转化率的计算方法有两种:

  • 绝对转化率:每一个环节的订单数除以初始环节的订单数
  • 相对转化率:每一个环节的订单数除以上一个环节的订单数

两种计算方式有各自的适用场景,个人理解在了解整体情况时绝对转化率更适合,而加入维度进行对比时,相对转化率则更适合。因此本环节中,使用绝对转化率进行计算。

实现方式

正常的groupby函数并不能帮助我们对特定列进行复杂的筛选,因此需要手动计算各环节的订单数。

  1. 求出各环节的订单数
    • 订单创建/付款:计次
    • 订单实际成交:筛选出买家实际支付金额大于0的所有行
    • 订单全额成交:筛选出买家实际支付金额等于总金额的所有行
  2. 求转化率:用本环节的订单数除以订单创建数
  3. 用pyecharts绘制漏斗图
rates = pd.Series({
   
    '创建':df['订单创建时间'].count(),
    '付款':df['订单付款时间'].count(),
    '实际成交':df[df['买家实际支付金额']>0].shape[0],
    '全额成交':df[df['买家实际支付金额']==df['总金额']].shape[0],
},name='订单量').to_frame()
# 绝对转化率=各环节订单数/订单创建数
rates['整体转化率']=rates['订单量'].apply(lambda x: round(x*100/rates.iloc[0,0],3
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值