卡特兰数(Catalan)公式、证明、代码、典例.

本文部分转自https://www.cnblogs.com/yuzilan/p/10626072.html,这位大牛对于卡特兰数的剖析可以说是非常非常详细了!感谢前辈的分享!

1. 定义

卡特兰数(卡塔兰数),英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列。
其前几项为(从第零项开始) :

C0 = 1,         
C1 = 1,         C2 = 2,          C3 = 5,          C4 = 14,          C5 = 42,
C6 = 132,       C7 = 429,        C8 = 1430,       C9 = 4862,        C10 = 16796,
C11 = 58786,    C12 = 208012,    C13 = 742900,    C14 = 2674440,    C15 = 9694845,
C16 = 35357670, C17 = 129644790, C18 = 477638700, C19 = 1767263190, C20 = 6564120420, ...

2. 公式

这里仅举简单且常用的一个

通项公式:Cn=11+n(2nn)=11+nCn2n=(2n)!(n+1)!n!Cn​=1+n1​(n2n​)=1+n1​C2nn​=(n+1)!n!(2n)!​

3. Catalan公式推导

公式推导的话有感兴趣的小伙伴可以百度(我是真看不下去……o(╥﹏╥)o先不贴出来了)

4. 卡特兰数的代码实现

//函数功能: 计算Catalan的第n项
//函数参数: n为项数
//返回值:  第n个Catalan数
int Catalan(int n)
{
	if(n<=1) return 1;
	int *h = new int [n+1]; //保存临时结果
	h[0] = h[1] = 1;        //h(0)和h(1)
	for(int i=2;i<=n;++i)    //依次计算h(2),h(3)...h(n)
	{
		h[i] = 0;
		for(int j = 0; j < i; j++) //根据递归式计算 h(i)= h(0)*h(i-1)+h(1)*h(i-2) + ... + h(i-1)h(0)
			h[i] += (h[j] * h[i-1-j]);
	}
	int result = h[n]; //保存结果
	delete [] h;       //注意释放空间
	return result;
}

5. 典例

1. 出栈次序
一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?

  1. 首先,我们设 f(n)=序列个数为n的出栈序列种数。

  2. 同时假定,从开始到栈第一次出到空为止,这段过程中第一个出栈的序数是k。
    特别地,如果栈直到整个过程结束时才空,则k=n。

  3. 首次出空之前第一个出栈的序数k将1 ~ n的序列分成两个序列:其中一个是1 ~ k-1,序列个数为k-1;另外一个是k+1 ~ n,序列个数是n-k。

  4. 此时,我们若把k视为确定一个序数,那么根据乘法原理,f(n)的问题就等价于——序列个数为k-1的出栈序列种数乘以序列个数为n - k的出栈序列种数(一种递归的思想),即选择k这个序数的f(n)=f(k-1)×f(n-k)。

  5. 而k可以选1到n,所以再根据加法原理,将k取不同值的序列种数相加,得到的总序列种数为:f(n)=f(0)f(n−1)+f(1)f(n−2)+……+f(n−1)f(0)f(n)=f(0)f(n−1)+f(1)f(n−2)+……+f(n−1)f(0)

  6. 这个公式与卡特兰数的递推式一模一样,即为f(n)=h(n)=1n+1Cn2n=Cn2n−Cn+12nf(n)=h(n)=n+11​C2nn​=C2nn​−C2nn+1​。最后,令f(0)=1,f(1)=1。

    其解等于第n个Catalan数。


2. 01序列
给出一个n,要求一个长度为2n的01序列,使得序列的任意前缀中1的个数不少于0的个数, 有多少个不同的01序列?
以下为长度为6的序列:
111000 101100 101010 110010 110100

有了上面出栈次序那道题的分析,这道题仿佛似曾相识,其本质就是出栈次序的变式:

  1. 因为对于每一个数来说,必须进栈一次、出栈一次。我们把进栈设为状态‘1’,出栈设为状态‘0’。n个数的所有状态对应n个1和n个0组成的2n位二进制数。
  2. 由于等待入栈的操作数按照1‥n的顺序排列、入栈的操作数b大于等于出栈的操作数a(a≤b),因此输出序列的总数目=由左而右扫描由n个1和n个0组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。

该题的操作方法:

  1. 在2n位二进制数中填入n个1的方案数为 Cn2nC2nn​,不填1的其余n位自动填0。
  2. 从中减去不符合要求(由左而右扫描,0的累计数大于1的累计数)的方案数即为所求。
  3. 不符合要求的数的特征是由左而右扫描时,必然在某一奇数位2m+1位上首先出现m+1个0的累计数和m个1的累计数,此后的2n-2m-1位上有n-m个 ‘1’ 和n-m-1个 ‘0’
  4. 如若把后面这2n-2m-1位上的0和1互换,使之成为n-m个 ‘0’ 和n-m-1个 ‘1’,结果得1个由n+1个 ‘0’ 和n-1个 ‘1’ 组成的2n位数,即一个不合要求的数对应于一个由n+1个 ‘0’ 和n-1个 ‘1’ 组成的排列。
  5. 反过来,任何一个由n+1个 ‘0’ 和n-1个 ‘1’ 组成的2n位二进制数,由于0的个数多2个,2n为偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个 ‘0’ 和n个 ‘1’ 组成的2n位数,即n+1个 ‘0’ 和n-1个 ‘1’ 组成的2n位数必对应一个不符合要求的数。
  6. 因而不合要求的2n位数与n+1个 ‘0’,n-1个 ‘1’ 组成的排列一一对应。
  7. 显然,不符合要求的方案数为Cn+12nC2nn+1​。由此得出输出序列的总数目f(n)=h(n)=Cn2n−Cn+12n=1n+1Cn2nf(n)=h(n)=C2nn​−C2nn+1​=n+11​C2nn​。
    其解等于第n个Catalan数

3. ‘+1’ ‘-1’序列

n个+1和n个-1构成的2n项 a1,a2,⋅⋅⋅,a2na1​,a2​,⋅⋅⋅,a2n​,其部分和满足非负性质,即a1+a2+⋅⋅⋅+ak>=0a1​+a2​+⋅⋅⋅+ak​>=0,(k=1,2,···,2n) ,有多少个不同的此序列?

此典例解析与01序列解析一模一样,即此数列的个数等于第n个Catalan数,此处就不再赘述。
其解等于第n个Catalan数。


4. 括号序列

n对括号有多少种匹配方式?
例如3对括号构成的合法括号序列有C3=5C3​=5个:((())),()(()),()()(),(())(),(()())。

其本质是“01序列”的变式
我们把左括号设为状态‘1’,右括号设为状态‘0’。n对括号的所有状态对应n个 ‘1’ 和n个 ‘0’ 组成的2n位二进制数。
由于必须先有左括号,才能匹配右括号,因此输出正确括号序列的总数目=由左而右扫描由n个 ‘1’ 和n个 ‘0’ 组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。

其解等于第n个Catalan数。

5. 找零问题

2n个人要买票价为五元的电影票,每人只买一张,但是售票员没有钱找零。其中,n个人持有五元,另外n个人持有十元,问在不发生找零困难的情况下,有多少种排队方法?

其本质是“01序列”的变式:
我们把持有五元的人设为状态‘1’,持有十元的人设为状态‘0’。2n个人的所有状态对应n个 ‘1’ 和n个 ‘0’ 组成的2n位二进制数。
由于必须先有1个持有五元的人排在1个持有十元的人的前面,才能不发生找零困难,因此不发生找零困难排队方法的总数目=由左而右扫描由n个 ‘1’ 和n个 ‘0’ 组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。

其解等于第n个Catalan数。

6. 矩阵链乘

P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?

思路:(同“出栈次序”思想一致

  1. 可以这样考虑,首先通过括号化,将P分成两个部分,然后分别对两个部分进行括号化。(递归分治思想)

  2. 比如分成(a1)×(a2×a3…×an),然后再对(a1)和(a2×a3…×an)分别括号化;又如分成(a1×a2)×(a3…×an),然后再对(a1×a2)和(a3…×an)括号化。

  3. 设n个矩阵的括号化方案的种数为f(n),那么问题的解为
    f(n) = f(1)*f(n-1) + f(2)*f(n-2) + f(3)*f(n-3) + f(n-1)*f(1)。f(1)*f(n-1)表示分成(a1)×(a2×a3…×an)两部分,然后分别括号化。

计算开始几项,f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 5。结合递归式,不难发现f(n)等于h(n-1)。

其解等于第n-1个Catalan数。

7. 二叉树计数

有n个节点构成的二叉树(非叶子节点都有2个儿子),共有多少种情形?
有n+1个叶子的二叉树的个数?

以上两种问题实际上是同一个问题。
举例:n=3的情况:

在这里插入图片描述
思路:(递归分治思想

  1. 可以这样考虑,根肯定会占用一个结点,那么剩余的n-1个结点可以有如下的分配方式,T(0,n−1),T(1,n−2),…,T(n−1,0)T(0,n−1),T(1,n−2),…,T(n−1,0)。设T(i,j)T(i,j)表示根的左子树含i个结点,右子树含j个结点。
  2. 然后对于根结点情况为T(i,j)T(i,j)的左子树再有如下分配方式:T(0,i−1),T(1,i−2),…,T(i−1,0)T(0,i−1),T(1,i−2),…,T(i−1,0),其右子树分配方式:T(0,j−1),T(1,j−2),…,T(j−1,0)T(0,j−1),T(1,j−2),…,T(j−1,0)
  3. 设问题的解为f(n),那么f(n) = f(0)*f(n-1) + f(1)*f(n-2) + …+ f(n-2)*f(1) + f(n-1)*f(0)。假设f(0) = 1,那么f(1) = 1, f(2) = 2, f(3) = 5。结合递推式,不难发现f(n)等于h(n)。

其解等于第n个Catalan数。


8. 凸多边形划分

在一个n边形中,通过不相交于n边形内部的对角线,把n边形拆分为若干个三角形,问有多少种拆分方案?

如五边形有如下5种拆分方案:
在这里插入图片描述
如六边形有如下14种拆分方案:

在这里插入图片描述
思路:(递归分治思想

  1. 以凸多边形的一边为基,设这条边的2个顶点为A和B。从剩余顶点中选1个,可以将凸多边形分成三个部分,中间是一个三角形,左右两边分别是两个凸多边形,然后求解左右两个凸多边形。
  2. 设问题的解f(n),其中n表示顶点数,那么f(n)=f(2)*f(n-1)+f(3)*f(n-2)+……+f(n-2)*f(3)+f(n-1)*f(2)。
    其中,f(2)*f(n-1)表示:三个相邻的顶点构成一个三角形,另外两个部分的顶点数分别为2(一条直线两个点)和n-1。
    其中,f(3)*f(n-2)表示:将凸多边形分为三个部分,左右两边分别是一个有3个顶点的三角形和一个有n-2个顶点的多边形。
  3. 设f(2) = 1,那么f(3) = 1, f(4) = 2, f(5) = 5。结合递推式,不难发现f(n) 等于h(n-2)。

其解等于第n-2个Catalan数。


9. 圆上n条线段

在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?

思路:(递归分治思想

  1. 以其中一个点为基点,编号为 ‘0’ ,然后按顺时针方向将其他点依次编号。
  2. 那么与编号为 ‘0’ 相连的点的编号一定是奇数(否则,这两个编号间含有奇数个点,势必会有个点被孤立)。即把编号为 ‘0’ 的点与任意一个编号为奇数的点相连形成一条线段。
  3. 设选中的 ‘0’ 点为基点A,与它连接的点为B,那么A和B将所有点分成两个部分,一部分位于A、B的左边,另一部分位于A、B的右边。然后分别对这两部分求解即可。
  4. 设问题的解f(n),那么f(n) = f(0)*f(n-1) + f(1)*f(n-2) + f(2)*f(n-3) + …+f(n-2)*f(1) + f(n-1)*f(0)。
    其中,f(0)*f(n-1)表示编号0的点与编号1的点相连,此时位于它们右边的点的个数为0(可以连成0条线段),而位于它们左边的点为2n-2(可以连成n-1条线段)。依次类推。
  5. 令f(0) = 1, f(1) = 1, f(2) = 2。
  6. 结合递归式,不难发现f(n) 等于h(n)。

其解等于第n个Catalan数。


10. 单调路径

一位大城市的律师在他住所以北n个街区和以东n个街区处工作,每天他走2n个街区去上班。如果他从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?

分析:

  1. 一个单调路径从格点左下角出发,在格点右上角结束,每一步均为向上或向右。X代表“向右”,Y代表“向上”。
  2. 可以发现任意步数的前缀中‘X’的个数不少于‘Y’的个数。
  3. 那么问题便转换成“01序列”问题的变体“XY序列”问题:给出一个n,要求一个长度为2n的XY序列,使得序列的任意前缀中X的个数不少于Y的个数, 有多少个不同的XY序列?

举例:n=4的情况:
在这里插入图片描述

其解等于第n个Catalan数。

11. 填充阶梯图形

用n个长方形填充一个高度为n的阶梯状图形的方法个数?

举例:n=4的情况
在这里插入图片描述
思路:(递归分治思想
1.把高度为n-1的阶梯状图形,塞进高度为n的阶梯状图形,把高度为n的阶梯状图形分为几个部分。

1.设问题的解f(n),其中n表示高度为n的阶梯状图形或n个长方形。

2.先来看n=1,易得f(1)=1;同理f(2)=2。其中f(1)不仅表示高度为1的阶梯状图,而且表示长或宽有一条为1且另一条不等于n的长方形。

3.那n=3呢?其实,n=3即在n=2的阶梯图形上再添加一个高度为1宽度为3(或高度为3宽度为1)的长方形,而且只有两种添加方法,即要么在左边添加,要么在上边添加,这样才能构成一个高度为n=3的阶梯状图形。

4.我们设f(0)=1。f(0)代表:一边为n,一边为1的长方形。

5.那么f(3)=f(0)*f(2)+f(1)*f(1)+f(2)*f(0)=5。
其中,f(0)*f(2)表示:高度为3的阶梯状图形含有这两个部分,一个部分是高度为2的阶梯状图形,另外一个部分是一边为3一边为1的长方形。
其中,f(1)*f(1)表示:高度为3的阶梯状图形含有这两个部分,都是高度为1的阶梯状图形。

6.那么f(4)=f(0)*f(3)+f(1)*f(2)+f(2)*f(1)+f(3)*f(0)=14。
其中,f(0)*f(3)表示:高度为4的阶梯状图形含有这两个部分,一个部分是高度为3的阶梯状图形,另外一个部分是一边为4一边为1的长方形。
其中,f(1)*f(2)表示:高度为4的阶梯状图形含有这两个部分,一个部分是高度为1的阶梯状图形或者长或宽有一条为1且另一条不等于n的长方形,另外一个部分是高度为2的阶梯状图形。

7.结合递推式,不难发现f(n) 等于h(n)。

其解等于第n个Catalan数。

12. 摞碗问题

饭后,姐姐洗碗,妹妹把姐姐洗过的碗一个一个放进碗橱摞成一摞。一共有n个不同的碗,洗前也是摞成一摞的,也许因为小妹贪玩而使碗拿进碗橱不及时,姐姐则把洗过的碗摞在旁边,问:小妹摞起的碗有多少种可能的方式?

此典例解析是“出栈问题”的变式,其解析一模一样,即此数列的个数等于第n个Catalan数,此处就不再赘述。

其解等于第n个Catalan数。

13. 汽车胡同加油问题

一个汽车队在狭窄的路面上行驶,不得超车,但可以进入一个死胡同去加油,然后再插队行驶,共有n辆汽车,问共有多少种不同的方式使得车队开出城去?

此典例解析是“出栈问题”的变式,其解析一模一样,即此数列的个数等于第n个Catalan数,此处就不再赘述。

其解等于第n个Catalan数。

14. 还书借书问题

在图书馆一共2n个人在排队,n个还《面试宝典》一书,n个在借《面试宝典》一书,图书馆此时没有了面试宝典了,求他们排队的总数?

解析:
还书的人总是要大于或等于借书的人,即Cn2n−Cn−12nC2nn​−C2nn−1​
此典例解析是“找零问题”的变式,即此数列的个数等于第n个Catalan数。

其解等于第n个Catalan数。

15. 高矮排队问题

2n个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问排列方式有多少种?

其解等于第n个Catalan数。

  • 16
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值