卡特兰数 Catalan

本文介绍了卡特兰数及其在凸n边形三角划分、括号匹配、二叉搜索树构建、n对括号匹配和出栈序列等组合问题中的应用。通过递推公式和实例解析,展示了卡特兰数在解决这些计数问题中的重要作用。
摘要由CSDN通过智能技术生成

做初赛题,回顾到以前学的一些知识,发现还有其他广泛的应用,所以在此记录并当作复习,若有不当之处,随时欢迎读者斧正。

Catalan

卡特兰数又称卡塔兰数,卡特兰数是组合数学中一个常出现在各种计数问题中的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名

原理(摘自百度百科)

设h(n)为Catalan数的第n+1项,令h(0)=1,h(1)=1,Catalan数满足递推式
h(n)= h(0)h(n-1)+h(1)h(n-2) + … + h(n-1)h(0) (n>=2)
例如:h(2)=h(0)h(1)+h(1)h(0)=11+11=2
\quad\quad h(3)=h(0)h(2)+h(1)h(1)+h(2)h(0)=12+11+21=5
另类递推式:
\quad\quad h(n)=h(n-1)
(4
n-2)/(n+1)
递推关系的解为:
\quad\quad h(n)=C(2n,n)/(n+1) (n=0,1,2,…)
递推关系的另类解为:
\quad\quad h(n)=C(2n,n)-C(2n,n-1)(n=0,1,2,…)

应用

(1)凸n边形的三角划分方案数

笔者第一次接触卡特兰数是一道关于凸多边形的三角形划分问题,题目很容易懂:给出一个凸n边形,通过若干条互不相交的对角线,把这个多边形划分成了若干个三角形。输入n,求不同划分的方案数f(n)
我初次尝试时,试着找规律,结果花式凉凉 ,老师第一次讲,听得云里雾里,回顾几次后,到觉得有点意思。

现在,读者请见下图:
在这里插入图片描述
一个凸n边形,两处标有省略号的地方表示省略的边,即顶点2到顶点i之间还有 i-2+1 条边,另一处同理。现在如果不知道卡特兰数的同学是不是无从下手,别慌,问题不大。因为凸n边形的任意一条边必定属于某一个三角形,所以我们以某一条边为基准,此图以顶点1和顶点n为基准。我们任意取一个点i使得1,n, i构成一个三角形,连接1-i,n-i.
见下图:
在这里插入图片描述
如图所示,凸n变形变为了一个由一个三角形,一个凸i变形和一个凸n-i+1边形,构成的图形,即题目中的定义,则此时凸n边形的不同划分方案数就根据乘法原理,由凸i变形和凸n-i边形决定,即 f ( i ) × f [ n − i + 1 ] f(i)\times f[n-i+1] f(i)×f[ni+1],在考虑,如果我不取点i为与点1和点n构成三角形,那么i+1呢?i+2呢? ⋅ ⋅ ⋅ ··· ,选取不同的点之后便会有 f ( i + 1 ) × f [ n − ( i + 1 ) + 1 ] , f(i+1)\times f[n-(i+1)+1], f(i+1)×f[n(i+1)+1],    f ( i + 2 ) × f [ n − ( i + 2 ) + 1 ] ⋅ ⋅ ⋅ \,\,f(i+2)\times f[n-(i+2)+1]··· f(i

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值