数字图像处理算法实现
努力撸代码的小刑
全力以赴,追求卓越!
展开
-
正则表达式
'''#清理并转换以下字符串。删除空格和标点符号,并返回标题字符串列表。#数字字符清理,必须得要将列表中的大小写换位与题目当中一样的,这个地方就是需要再做思考#说明:首先定义两个列表对象provinces和cities'''import reimport string provinces = ['beiJing!', ' guangdong ', ' jiangsU', ' ZHEJiang?', '#ShanDONG', 'ShAAnXi', 'Fujian##', 'yunnan?_.原创 2022-03-08 21:51:15 · 403 阅读 · 0 评论 -
中值滤波原理及其代码实现
本文主要是对高斯滤波,中值滤波原理进行简单介绍,随后用代码实现高斯噪声和椒盐噪声。以及用高斯滤波和中值滤波对这两种图像进行相关的处理。高斯噪声:就是服从高斯正态分布的噪声,通常是因为高温或者是传感器所引起的噪声,常识分布均匀的椒盐噪声:椒盐噪声又称脉冲噪声,它随机改变一些像素值,是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声对着两种噪声有降噪的方法如下中值滤波:抑制噪声保持细节,将窗口中奇数个数据按照大小顺序排列,处理中间的位置的那个数作为处理结果中值滤波法是一.原创 2020-10-26 21:45:35 · 5130 阅读 · 5 评论 -
图像的非线性检测
图像的非线性检测(主要是对数变换)import cv2import numpy as npimg = cv2.imread("C:/Users/JackXing/Pictures/001.jpg")grayImage=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#图像进行灰度转化#创建图像的高度和宽度height=grayImage.shape[0]width= grayImage.shape[1]#创建以赴图像result=np.zeros((heig原创 2020-10-15 21:44:27 · 633 阅读 · 0 评论 -
图像的二值化处理
图像进行二值化是为了使整体的图像凸显为黑和白的效果常用的是设置阈值T,用T把图像的数据分为两部分,大于T的像素群和小于T的像素群最常用的是大津法进行二值化,从内方差和类间方差的比值得到以下是详细的代码书写import cv2import numpy as npimg = cv2.imread("C:/Users/JackXing/Pictures/test.jpg").astype(np.float)H, W, C = img.shapeb = img[:, :, 0].copy(.原创 2020-10-15 19:39:37 · 1686 阅读 · 0 评论