FlinkSqlDemo

该博客详细介绍了如何使用Apache Flink进行实时流处理,包括创建流处理环境,定义数据源,设置水印,注册表,编写SQL查询,以及执行和打印结果。示例展示了基于事件时间的滑动窗口聚合操作,用于统计每3秒内用户的最大消费、最小消费和订单数量。
摘要由CSDN通过智能技术生成
object StreamSQLDemo1 {
  case class Order(orderId:String,UserID:Int,money:Long,timestamp:Long)
  def main(args: Array[String]): Unit = {
    //1.构建flink的流处理运行环境
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    //2.构建table的运行环境
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
    val tableEnv = TableEnvironment.getTableEnvironment(env)
    //3.创建订单数据通过addSource来生产数据,构建样例类来封装数据
    val orderDataStream = env.addSource(new RichSourceFunction[Order] {
      var isRunning= true
      override def run(ctx: SourceFunction.SourceContext[Order]): Unit = {
        while (isRunning){
          val order = Order(UUID.randomUUID().toString,Random.nextInt(3),Random.nextInt(101),System.currentTimeMillis())
          ctx.collect(order)
          TimeUnit.SECONDS.sleep(1)
        }
      }

      override def cancel(): Unit = {
        isRunning= false
      }
    })
    //4.添加水印
    val waterMarkDataStream = orderDataStream.assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks[Order] {
      var currentTime:Long = _
      val delayTime = 2000
      //生产水印
      override def getCurrentWatermark: Watermark = {
        val watermark = new Watermark(currentTime - delayTime)
        watermark
      }
      //获取订单时间
      override def extractTimestamp(element: Order, previousElementTimestamp: Long): Long = {
        val time = element.timestamp
        currentTime = Math.max(currentTime,time)
        currentTime
      }
    })

    //5.注册成表,也要把各个字段进行输入,使用单引号'进行标记,同时需要将时间调用rowtime方法,

    //导入隐式转换 import org.apache.flink.table.api.scala._
    tableEnv.registerDataStream("orderTable",waterMarkDataStream,'orderId,'UserID,'money,'createTime.rowtime)
    //6.编写sql,再sql中通过tumble(),指定事件时间,和指定窗口滑动时间 interval '' second
    val sql =
      """
        |select UserID,max(money) maxMoney,min(money) minMoney,count(1) orderNum from orderTable group by tumble(createTime,interval '3' second),
        |UserID
      """.stripMargin
    //7.使用tableEnv.sqlQuery 来执行sql
    val table = tableEnv.sqlQuery(sql)
    //8.将查询的数据转换为DataStream,使用toAppendStream来转换,指定Row行泛型,
    val resultDataStream = tableEnv.toAppendStream[Row](table)
    //9.启动程序
    resultDataStream.print()
    env.execute("APP")
  }
}

转载https://blog.csdn.net/qq_36039236/article/details/108621968

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值