问题描述:
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
解题思路:
最初解题思路,假设爬1阶的次数为x,爬2阶的次数为y,总共爬了n阶,那么1x+2y=n,以此循环遍历,每找到一次匹配条件,计数器加1。
class Solution:
def climbStairs(self, n: int) -> int:
count = 0
for x in range(0, n + 1):
for y in range(0, n + 1):
if (x + 2 * y) == n:
count += 1
return count
错误,这种思路只考虑了爬1阶和爬2阶的次数,没有考虑前后顺序,比如先爬1阶,再爬2阶,和,先爬2阶,再爬1阶,也就是1+2和2+1,这是两种方法,所以这个思路注定失败!
学习大佬们的解法,动态规划的思路要深入骨髓!
第1阶台阶:1种方法,爬1阶
第2阶台阶:2种方法,爬1阶或者爬2阶
第n阶台阶:从第n-1阶爬1阶到n阶,或者从n-2阶爬2阶到n阶
递推公式:f()=f(n-1)+f(n-2)
方法1:直接递归
class Solution:
def climbStairs(self, n: int) -> int:
if n == 1:
return 1
if n == 2:
return 2
return climbStairs(n-1) + climbStairs(n-2)
提交代码发现超出时间限制,时间复杂度O(2^n),空间复杂度O(n)。分析这个方法,每次递归的时候,存在重复的子问题。比如n=5时,需要计算n=3以及n=4的情况,计算n=4时,又会进行n=3的情况,所以需要进行一个优化。
方法2:动态规划
用一个数组 dp 存放中间子问题的结果,这样就不用每次都去计算重复的子问题。
dp[i]:爬 i 级楼梯的方法数。
class Solution:
def climbStairs(self, n: int) -> int:
if n == 1:
return 1
dp = [0] * (n+1)
dp[0] = 1
dp[1] = 1
for i in range(2,n+1):
dp[i] = dp[i-1] + dp[i-2]
return dp[n]
革命的道路还很长!