【leetcode70】爬楼梯-python实现

问题描述:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶

示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

解题思路:

最初解题思路,假设爬1阶的次数为x,爬2阶的次数为y,总共爬了n阶,那么1x+2y=n,以此循环遍历,每找到一次匹配条件,计数器加1。

class Solution:
    def climbStairs(self, n: int) -> int:
        count = 0
        for x in range(0, n + 1):
            for y in range(0, n + 1):
                if (x + 2 * y) == n:
                    count += 1
        return count

错误,这种思路只考虑了爬1阶和爬2阶的次数,没有考虑前后顺序,比如先爬1阶,再爬2阶,和,先爬2阶,再爬1阶,也就是1+2和2+1,这是两种方法,所以这个思路注定失败!

学习大佬们的解法,动态规划的思路要深入骨髓!

第1阶台阶:1种方法,爬1阶
第2阶台阶:2种方法,爬1阶或者爬2阶
第n阶台阶:从第n-1阶爬1阶到n阶,或者从n-2阶爬2阶到n阶
递推公式:f()=f(n-1)+f(n-2)

方法1:直接递归

class Solution:
    def climbStairs(self, n: int) -> int:
        if n == 1:
            return 1
        if n == 2:
            return 2
        return climbStairs(n-1) + climbStairs(n-2)

提交代码发现超出时间限制,时间复杂度O(2^n),空间复杂度O(n)。分析这个方法,每次递归的时候,存在重复的子问题。比如n=5时,需要计算n=3以及n=4的情况,计算n=4时,又会进行n=3的情况,所以需要进行一个优化。

方法2:动态规划

用一个数组 dp 存放中间子问题的结果,这样就不用每次都去计算重复的子问题。
dp[i]:爬 i 级楼梯的方法数。

class Solution:
    def climbStairs(self, n: int) -> int:
        if n == 1:
            return 1
        dp = [0] * (n+1)
        dp[0] = 1
        dp[1] = 1
        for i in range(2,n+1):
            dp[i] = dp[i-1] + dp[i-2]
        return dp[n]

革命的道路还很长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值