校园食堂明厨亮灶AI智能分析盒通过计算机视觉深度学习技术,校园食堂明厨亮灶AI智能分析盒赋能后厨摄像头具备对人员行为及着装分析抓拍的功能,校园食堂明厨亮灶AI智能分析盒可以自动识别后厨工作人员未按要求穿戴厨师服厨师帽以及戴口罩、违规在后厨吸烟以及偷偷玩手机等违规行为。除此之外,校园食堂明厨亮灶AI智能分析盒实时监测后厨鼠患、人员明火离岗、以及非法闯入等安全隐患,校园食堂明厨亮灶AI智能分析盒立即抓拍并同步上传到平台。校园食堂明厨亮灶AI智能分析盒可在边缘侧实时分析前端摄像头视频流数据,发现人员违规行为以及穿戴异常异常及时预警,立即同步通知管理人员进行处理。

YOLOv8 与YOLOv5出自同一个团队,是一款前沿、最先进(SOTA)的模型,基于先前 YOLOv5版本的成功,引入了新功能和改进,进一步提升性能和灵活性。YOLOv8是一种尖端的、最先进的 (SOTA) 模型,它建立在以前成功的 YOLO 版本的基础上,并引入了新的功能和改进,以进一步提高性能和灵活性。YOLOv8 旨在快速、准确且易于使用,这也使其成为对象检测、图像分割和图像分类任务的绝佳选择。具体创新包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,还支持YOLO以往版本,方便不同版本切换和性能对比。

YOLOv8 有 5 个不同模型大小的预训练模型:n、s、m、l 和 x。关注下面的参数个数和COCO mAP(准确率),可以看到准确率比YOLOv5有了很大的提升。特别是 l 和 x,它们是大模型尺寸,在减少参数数量的同时提高了精度。

校园食堂明厨亮灶AI智能分析盒 YOLOv8_python

随着社会的发展以及人们生活水平的进步,大家面对食品安全事故的频繁发生也更加不安更加重视,频发的食品安全事件也使各级监管部门意识到,安全管理不能完全依赖于生产经营者的意识,必须有更见明确更加智能的监管措施。早在2014年,食品药品监督管理总局就食品安全问题频发的问题,开始在全国各地陆续部署开展明厨亮灶工作。通过试点后开始在全国范围内正式推广。校园食堂明厨亮灶AI智能分析盒在食品安全领域发挥了更大的价值。

# From Mr. Dinosaur
 
import os
 
 
def listdir(path, list_name):  # 传入存储的list
    for file in os.listdir(path):
        file_path = os.path.join(path, file)
        if os.path.isdir(file_path):
            listdir(file_path, list_name)
        else:
            list_name.append(file_path)
 
 
list_name = []
path = 'D:/PythonProject/data/'  # 文件夹路径
listdir(path, list_name)
print(list_name)
 
with open('./list.txt', 'w') as f:  # 要存入的txt
    write = ''
    for i in list_name:
        write = write + str(i) + '\n'
    f.write(write)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.

校园食堂明厨亮灶AI智能分析盒基于AI视觉图像分析技术,校园食堂明厨亮灶AI智能分析盒可以识别后厨人员行为以及有害鼠患等情景。除此之外,校园食堂明厨亮灶AI智能分析盒对于非法进入后厨的人员以及不符合规定的着装,校园食堂明厨亮灶AI智能分析盒都将立即抓拍存档发出告警提醒,校园食堂明厨亮灶AI智能分析盒实现食品安全传统监管方式由传统人力干涉向AI自动识别分析预警监管转变。校园食堂明厨亮灶AI智能分析盒提升了后厨全天候自动监管的效率,降低了因人工因素产生的误报漏报等情况。