【算法练习】DFS/Flood Fill 733. 图像渲染/1034. 边框着色

前言

 大家好,今天是@LetItbeSun 坚持每日两题的第20天。

题目1

733. 图像渲染

难度简单169

有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 到 65535 之间。

给你一个坐标 (sr, sc) 表示图像渲染开始的像素值(行 ,列)和一个新的颜色值 newColor,让你重新上色这幅图像。

为了完成上色工作,从初始坐标开始,记录初始坐标的上下左右四个方向上像素值与初始坐标相同的相连像素点,接着再记录这四个方向上符合条件的像素点与他们对应四个方向上像素值与初始坐标相同的相连像素点,……,重复该过程。将所有有记录的像素点的颜色值改为新的颜色值。

最后返回经过上色渲染后的图像。

示例 1:

输入: 
image = [[1,1,1],[1,1,0],[1,0,1]]
sr = 1, sc = 1, newColor = 2
输出: [[2,2,2],[2,2,0],[2,0,1]]
解析: 
在图像的正中间,(坐标(sr,sc)=(1,1)),
在路径上所有符合条件的像素点的颜色都被更改成2。
注意,右下角的像素没有更改为2,
因为它不是在上下左右四个方向上与初始点相连的像素点。

注意:

  • image 和 image[0] 的长度在范围 [1, 50] 内。
  • 给出的初始点将满足 0 <= sr < image.length 和 0 <= sc < image[0].length
  • image[i][j] 和 newColor 表示的颜色值在范围 [0, 65535]内。

思路和代码

这是一个简单的Flood Fill的问题,就是相同颜色的连通然后重新上色。

考虑dfs的边界:

①出界

②遇到和origin不同的颜色

【需要注意的问题:如果重新上色的颜色和原来的颜色相同那么会陷入无限递归, 

//死循环的本质是访问了访问过的节点 然后互相访问 由于没有标记且如果originColor和newColor一样的话】

解决方案:设置visit  更好的解决方案:直接设置访问过的颜色为-1(?为什么可行 因为可以区分开颜色和已访问?

class Solution {
public:
    vector<vector<int>> floodFill(vector<vector<int>>& image, int sr, int sc, int newColor) {
        fill(image,sr,sc,image[sr][sc],newColor);  //调用这个函数进行flood fill
        return image;
    }

    void fill(vector<vector<int>>& image,int x,int y,int originColor,int newColor){
        //递归出口
        //越界
        if(x<0 || x>=image.size() || y<0 || y>=image[0].size()){
            return;
        }
        //和原来的color不一样 不能flood
        if(image[x][y]!=originColor){
            return;
        }

        image[x][y]=-1;  //先标记成-1 然后dfs   这样就不会出现死循环
        //死循环的本质是访问了访问过的节点 然后互相访问 由于没有标记且如果originColor和newColor一样的话
        fill(image,x,y+1,originColor,newColor);
        fill(image,x,y-1,originColor,newColor);
        fill(image,x+1,y,originColor,newColor);
        fill(image,x-1,y,originColor,newColor);
        image[x][y]=newColor;
    }
};

 

题目2

1034. 边框着色

难度中等23

给出一个二维整数网格 grid,网格中的每个值表示该位置处的网格块的颜色。

只有当两个网格块的颜色相同,而且在四个方向中任意一个方向上相邻时,它们属于同一连通分量

连通分量的边界是指连通分量中的所有与不在分量中的正方形相邻(四个方向上)的所有正方形,或者在网格的边界上(第一行/列或最后一行/列)的所有正方形。

给出位于 (r0, c0) 的网格块和颜色 color,使用指定颜色 color 为所给网格块的连通分量的边界进行着色,并返回最终的网格 grid 。

 

示例 1:

输入:grid = [[1,1],[1,2]], r0 = 0, c0 = 0, color = 3
输出:[[3, 3], [3, 2]]

示例 2:

输入:grid = [[1,2,2],[2,3,2]], r0 = 0, c0 = 1, color = 3
输出:[[1, 3, 3], [2, 3, 3]]

示例 3:

输入:grid = [[1,1,1],[1,1,1],[1,1,1]], r0 = 1, c0 = 1, color = 2
输出:[[2, 2, 2], [2, 1, 2], [2, 2, 2]]

 

提示:

  1. 1 <= grid.length <= 50
  2. 1 <= grid[0].length <= 50
  3. 1 <= grid[i][j] <= 1000
  4. 0 <= r0 < grid.length
  5. 0 <= c0 < grid[0].length
  6. 1 <= color <= 1000

 

思路和代码

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值