MiniMax接入DeepSeek-R1,AI六小虎首家!还限时免费!

DeepSeek-R1 的好用是有目共睹的,从“思考过程”到回答,足以令人感到惊艳。

偏偏,这么强大的模型,它还是开源的。

这就导致: 万物皆可 DeepSeek-R1

毕竟,连月活用户为13.82亿的微信都接入 DeepSeek-R1 了,还有哪个平台是不能接的呢?

这不,近期,国内 AI “大模型六小虎”之一的MiniMax就率先官宣,为自家的 AI 助手平台 MiniMax Chat 接入了 DeepSeek-R1 模型。并且,限时免费

先放上 MiniMax Chat 的地址:https://chat.minimax.io/。

注意,接入 DeepSeek-R1 是 MiniMax Chat,而不是海螺AI

我曾详细介绍过 MiniMax 的产品矩阵,其中我提到,海螺AI是分为国内版(hailuoai.com)和海外版的,而这次 MiniMax 官方口中的 MiniMax Chat,其实本质就是海螺AI海外版。

而最初的海螺AI海外版的URL链接(hailuo.ai)目前已指向海螺AI国内版。

海螺AI国内版长这样。

而 MiniMax Chat 页面是这样的。所以,想体验 DeepSeek-R1,请认准 MiniMax Chat。

此外,MiniMax 在宣传新接入的 DeepSeek-R1 时,还小小的“调皮”了一下,特意强调“无需再等待服务器响应(No more waiting for server responses)”,就差把DeepSeek官方的身份证号码报出来了吧!

而要想在 MiniMax Chat 使用 DeepSeek-R1 模型,很简单,只需要在 模型选择 下拉列表里选择 DeepSeek-R1 即可,就像这样。

经过验证,MiniMax Chat 的 DeepSeek-R1 是百分百满血版,可以放心“食用”。

轻松回答“鸡你太美”的经典问题。

“平头哥问题”也是轻松拿捏。

这道含有除法的24点问题(用数字 2、3、5、12 和四则运算得出结果 24),也能够正确回答。

而当我让 DeepSeek-R1 锐评“OpenAI”时,那小味儿蹭的一下就上来了!

摘录部分语录: "大家好我是ChatGPT",开场就给爷整笑了😅 OpenAI你这是要让AI接管地球啊?GPT-4o免费🆓开放?表面上"技术普惠",实则把用户当免费测试员是吧?996工程师连夜焊死在服务器上🚀

还得是你啊,DeepSeek,一看就是正版的!

完整版看下面。

然而,美中不足的是,MiniMax Chat 里的 DeepSeek-R1 目前还 不支持“联网搜索” ,只能根据训练数据问答。

当然,这只是暂时的。因为 MiniMax 官方已经明确表示:近期会上


我是木易,一个专注AI领域的技术产品经理,国内Top2本科+美国Top10 CS硕士。

相信AI是普通人的“外挂”,致力于分享AI全维度知识。这里有最新的AI科普、工具测评、效率秘籍与行业洞察。

欢迎关注“AI信息Gap”,用AI为你的未来加速。


精选推荐

​​​​​

### 主要差异比较 #### 架构特性 Chat Mistral、MiniMax-Text-01DeepSeek R1 这三种语言模型在架构上存在显著区别。具体来说: - **Chat Mistral**采用了改进版的Transformer结构,具有更高效的自注意力机制和优化后的前馈网络设计[^1]。 - **MiniMax-Text-01**则专注于轻量化的设计理念,在保持较高性能的同时减少了参数量,适合资源受限环境下的应用[^2]. - **DeepSeek R1**引入了多模态处理能力,不仅能够理解文本输入还能解析图像和其他形式的数据,这使得其应用场景更加广泛[^3]. #### 性能表现 不同模型在实际运行中的效率也有所不同: - 对于推理速度而言,**Chat Mistral**由于采用了一系列加速技术实现了更快的响应时间,尤其适用于实时对话场景. - 而**MiniMax-Text-01**,尽管整体规模较小,但在特定任务上的精度却表现出色,能够在较低硬件配置下维持良好的用户体验. - 另一方面,**DeepSeek R1**因为支持多种数据类型的融合分析,虽然单次请求耗时可能较长,但对于复杂查询的支持度更高,特别适合需要综合判断的情境. ```python # 示例代码展示如何加载并测试这些模型的速度对比(伪代码) import time def benchmark(model_name): start_time = time.time() # 加载对应模型... model = load_model(model_name) # 执行一次预测操作... result = model.predict("example input") end_time = time.time() return f"{model_name}: {end_time - start_time} seconds" print(benchmark('Chat_Mistral')) print(benchmark('MiniMax_Text_01')) print(benchmark('DeepSeek_R1')) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值