DeepSeek昨日公布的V3/R1推理系统成本利润数据引发了行业广泛关注。
根据其开源周披露的线上服务统计,在H800 GPU租赁成本2美元/小时的前提下,理论日成本为87,072美元,日收入可达562,027美元,成本利润率高达545%。
这一数字背后是多项技术创新。
1️⃣ 采用跨节点专家并行(EP)架构,将256个专家分布在多节点,通过EP32(prefill)和EP144(decode)部署策略实现批量扩展。
2️⃣ 创新性双batch重叠技术,prefill阶段计算与通信重叠率超80%,decode阶段拆分为5级流水线。
3️⃣ 动态负载均衡系统,通过三层负载均衡器(Prefill/Decode/Expert-Parallel)确保GPU利用率偏差小于5%。
相较于OpenAI,DeepSeek展现出显著的成本优势。
1. 单位经济效益
DeepSeek-R1推理成本为0.55美元/百万tokens(缓存未命中),而GPT-4o API定价达10美元/百万输出tokens。即使考虑OpenAI 55%的API毛利率,其实际成本仍比DeepSeek高20-50倍。
2. 基础设施策略
DeepSeek采用"潮汐式"节点调度,夜间将30%节点转作训练使用,相较OpenAI固定配置的Azure GPU集群,设备利用率提升40%。
3. 盈利模式差异
值得关注的是,OpenAI虽预计2025年收入达116亿美元,但其运营亏损预计仍将维持在高位(约50亿美元),主要源于GPT-5训练的万卡集群投入。而DeepSeek通过将训练/推理基础设施整合,声称其R1模型训练成本仅为同类模型的1/20,这种端到端优化可能重塑行业成本基准。
我是木易,一个专注AI领域的技术产品经理,国内Top2本科+美国Top10 CS硕士。
相信AI是普通人的“外挂”,致力于分享AI全维度知识。这里有最新的AI科普、工具测评、效率秘籍与行业洞察。
欢迎关注“AI信息Gap”,用AI为你的未来加速。