这才是真正的斐波那契数列的“递归实现”和“基于栈的非递归实现”-java

说明:斐波那契数列基于栈的非递归实现,是为了用来实现数列,而不是为了降低时间或空间复杂度。

/**
 * 递归或基于栈的方式实现斐波那契数列。
 *
 * @author <a href="mailto:electricalqzhang@gmail.com">Pioneer4</a>
 * @since 2022/2/10 22:00
 */
public class Fibonacci {
    public static void main(String[] args) {
        for (int i = 0; i < 6; i++) {
            System.out.println(fib(i));
        }

        System.out.println("*******");

        for (int i = 0; i < 6; i++) {
            System.out.println(fibWithStack(i));
        }

        System.out.println("*******");

        for (int i = 0; i < 6; i++) {
            System.out.println(fibWithStack1(i));
        }

    }

    /**
     * 基于递归实现。
     *
     * @param n
     * @return
     */
    public static int fib(int n) {

        if(n == 0 || n == 1) { return 1; }

        return fib(n-1) + fib(n-2);
    }

    /**
     * 基于栈,用非递归方式实现 Fibonacci。
     * 引入临时变量 sum 来保存结果。
     *
     * @param n
     * @return
     */
    public static int fibWithStack(int n) {
        Stack<FibNode> stack = new Stack<>();
        stack.push(new FibNode(n, Direction.DOWN));
        int sum = 0;

        do {
            FibNode fNode = stack.pop();
            if (fNode.dir == Direction.DOWN) {
                if (fNode.value == 0 || fNode.value == 1) {
                    stack.push(new FibNode(1, Direction.UP));
                    continue;
                }
                stack.push(new FibNode(fNode.value-1, Direction.DOWN));
                stack.push(new FibNode(fNode.value-2, Direction.DOWN));
            } else {
                sum = sum + fNode.value;
            }
        } while (stack.size() > 0);

        return sum;
    }

    /**
     * 基于栈,用非递归方式实现 Fibonacci。
     * 无需引入临时变量 sum 来保存结果,结果存在栈中。
     *
     * @param n
     * @return
     */
    public static int fibWithStack1(int n) {
        Stack<FibNode> stack = new Stack<>();
        stack.push(new FibNode(n, Direction.DOWN));

        do {
            FibNode fNode = stack.pop();
            if (fNode.dir == Direction.DOWN) {
                if (fNode.value == 0 || fNode.value == 1) {
                    stack.push(new FibNode(1, Direction.UP));
                    continue;
                }
                stack.push(new FibNode(fNode.value-1, Direction.DOWN));
                stack.push(new FibNode(fNode.value-2, Direction.DOWN));
            } else {
                FibNode fNodeSec = stack.pop();
                // 如果第2个节点是 DOWN,则把第1个 UP 节点和第2个DOWN节点交换次序;
                // 如果第2个节点为 UP,则把第1个 UP 节点和第2个 UP 节点相加,生成新的 UP 节点,并放入栈中;
                if (fNodeSec.dir == Direction.DOWN) {
                    stack.push(new FibNode(fNode.value, Direction.UP));
                    stack.push(fNodeSec);
                } else {
                    stack.push(new FibNode(fNode.value+fNodeSec.value, Direction.UP));
                }
            }
        } while (stack.size() > 1);

        return  stack.pop().value;
    }

    static class FibNode {
        // 数据
        int value;
        // 栈计算标识
        Direction dir;

        public FibNode(int value, Direction dir) {
            this.value = value;
            this.dir = dir;
        }
    }

    enum Direction {
        DOWN, UP;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值