深度学习
文章平均质量分 88
vision_cgq
这个作者很懒,什么都没留下…
展开
-
深度学习入门之pytorch——Resnet
ResNet当大家还在惊叹 GoogLeNet 的 inception 结构的时候,微软亚洲研究院的研究员已经在设计更深但结构更加简单的网络 ResNet,并且凭借这个网络子在 2015 年 ImageNet 比赛上大获全胜。ResNet 有效地解决了深度神经网络难以训练的问题,可以训练高达 1000 层的卷积网络。网络之所以难以训练,是因为存在着梯度消失的问题,离 loss 函数越远的层,在...原创 2018-12-02 12:35:35 · 890 阅读 · 0 评论 -
深度学习入门之Pytorch——Momentum
动量法动量法是梯度下降法的变式,在随机梯度下降的同时,增加动量。这是来自于物理中的概念,可以想象损失函数是一个山谷,一个球从山谷滑下来,在一个平坦的地势,球的滑动速度就会慢下来,可能陷入一些鞍点或者局部极小值点,如图这个时候给它增加动量就可以让它从高处滑落时的势能转换为平地的动能,相当于惯性增加了小球在平地滑动的速度,从而帮助其跳出鞍点或者局部极小点。动量怎么计算呢?动量的计算基于前面的梯...原创 2018-11-30 19:46:33 · 6283 阅读 · 0 评论 -
深度学习入门之Pytorch——DenseNet
DenseNet因为 ResNet 提出了跨层链接的思想,这直接影响了随后出现的卷积网络架构,其中最有名的就是 cvpr 2017 的 best paper,DenseNet。DenseNet 和 ResNet 不同在于 ResNet 是跨层求和,而 DenseNet 是跨层将特征在通道维度进行拼接,下面可以看看他们两者的图示第一张图是ResNet,第二张图是DenseNet,因为是在通...原创 2018-12-01 19:29:47 · 1744 阅读 · 2 评论 -
深度学习入门之Pytorch——数据增强
数据增强卷积神经网络非常容易出现过拟合的问题,而数据增强的方法是对抗过拟合问题的一个重要方法。2012 年 AlexNet 在 ImageNet 上大获全胜,图片增强方法功不可没,因为有了图片增强,使得训练的数据集比实际数据集多了很多’新’样本,减少了过拟合的问题,下面我们来具体解释一下。常用的数据增强方法常用的数据增强方法如下:1.对图片进行一定比例缩放2.对图片进行随机位置的截取...原创 2018-12-06 23:33:14 · 41644 阅读 · 26 评论 -
基于yolov3源码的训练过程
基于yolov3源码的训练过程在yolo官网上使用一下指令可以对模型的数据集进行训练./darknet detector train cfg/voc.data cfg/yolov3-voc.cfg darknet53.conv.74但是训练的源码究竟是怎么样的很多人都没搞懂,特别是网络前向传播的计算损失函数,花了很长的时间去找,终于找到了。1、从主函数开始,在example/darknet...原创 2019-03-08 00:44:57 · 966 阅读 · 0 评论 -
from torch._C import * ImportError: /home/gqchen/anaconda3/lib/python3.6/site-packages/torch/lib/../
Linux安装pytorch时出现cuda的库文件读取不了,import torchimport torchTraceback (most recent call last):File “”, line 1, in File “/home/gqchen/anaconda3/lib/python3.6/site-packages/torch/init.py”, line 84, in fr...原创 2019-04-01 21:35:29 · 17094 阅读 · 0 评论