八大排序算法

八大排序算法:

  • 冒泡排序
  • 插入排序
  • 希尔排序
  • 选择排序
  • 堆排序
  • 归并排序
  • 快速排序
  • 基数排序

排序稳定性:任意两个相等的数据,排序前后的相对位置不发生变化。
1.简单排序

冒泡排序

def Bubble_sort(lists):
    count=len(lists)
    for P in range(count-1,1,-1):
        flag=0
        for i in range(P):
            if lists[i]>lists[i+1]:
                tmp=lists[i+1]
                lists[i+1]=lists[i]
                lists[i]=tmp
                flag=1
        if flag==0:break
    return lists

时间复杂度

  • 最好情况:原始数据顺序排列 T=O(N)
  • 最坏情况:原始数据逆序排列 T=O(N^2)

优点

  • 当要排序的数据存储于链表中,冒泡排序也可以实现。
  • 因为冒泡排序在前一个元素严格大于后一个时才交换,所以能保证稳定性。

插入排序

def Insert_sort(lists):
    count=len(lists)
    for P in range(1,count):
        tmp=lists[P]
        i=P
        while i>0 and lists[i-1]>tmp:
                lists[i]=lists[i-1]
                i-=1
        lists[i]=tmp
    return lists

时间复杂度

  • 最好情况:原始数据顺序排列 T = O ( N ) T=O(N) T=O(N)
  • 最坏情况:原始数据逆序排列 T = O ( N 2 ) T=O(N^{2}) T=O(N2)

优点:稳定

Remark:

  • 逆序对:对于下标 i &lt; j i&lt;j i<j,如果 l i s t s [ i ] &gt; l i s t s [ j ] lists[i]&gt;lists[j] lists[i]>lists[j],则称 ( i , j ) (i,j) (i,j)是一对逆序对
  • 交换两个相邻元素正好消去一个逆序对
  • 插入排序时间复杂度 T ( N + I ) = O ( N + I ) T(N+I)=O(N+I) T(N+I)=O(N+I),其中 I I I为逆序对数
  • 定理:任意 N N N个不同元素组成的序列平均具有 N ( N − 1 ) 4 \frac{N(N-1)}{4} 4N(N1)个逆序对
  • 推论:任何仅以交换相邻两元素来排序的算法,其平均时间复杂度为 Ω ( N 2 ) \Omega(N^{2}) Ω(N2)
    欲提高算法效率需
    ⇓ \Downarrow
    每次消去不止一个逆序对
    ⇓ \Downarrow
    每次交换间隔较远的2个元素
    ⇓ \Downarrow
    希尔排序

希尔排序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值