TensorFlow
jiao1107
这个作者很懒,什么都没留下…
展开
-
tensorflow2.0(5)函数式API和子类API实现
1.wide&deep模型介绍 传送门 2.函数式API实现模型 # 函数式API 功能API input = keras.layers.Input(shape = x_train.shape[1:]) hidden1 = keras.layers.Dense(30, activation='relu')(input) hidden2 = keras.layers.Dense(30, a...原创 2020-03-15 21:54:01 · 677 阅读 · 0 评论 -
tensorflow2.0(4)tf.keras搭建深度神经网络
搭建一个有20层全连接的深度神经网络 model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape = [28, 28])) # begin for _ in range(20): model.add(keras.layers.Dense(100, activation = 'relu')) # e...原创 2020-03-15 15:13:13 · 219 阅读 · 0 评论 -
tensorflow2.0(3)tf.keras搭建分类模型
本文展示了在tf.keras自带的数据集fashion_mnist上构建分类模型。 1.导入数据并查看 (1)导入相关的库并查看对应的版本 import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline import numpy as np import pandas as pd import sklearn ...原创 2020-03-15 13:12:24 · 480 阅读 · 0 评论 -
tensorflow2.0(2)keras简介
1.keras是什么 基于python的高级神经网络API 以tensorflow、CNTK或者Theano为后端运行,keras必须有后端才可以运行 2.tensorflow-keras tensorflow对keras API规范的实现 相对于以tensorflow为后端的keras,tensorflow-keras与tensorflow结合更加紧密 实现在tf.keras空间下 3....原创 2020-03-14 20:37:56 · 197 阅读 · 0 评论 -
tensorflow2.0(1)简介
1.tensorflow是什么 Google的开源软件库 采取数据流图,用于数值计算 支持多种平台——GPU、CPU、移动设备 最初用于深度学习,后来变得越来越通用 (1)数据流图 节点——处理数据 线——节点间的输入输出关系 线上运输张量 节点被分配到各种计算设备上运行 (2)特性 高度的灵活性、真正的可移植性、产品和科研相结合、自动求微分、多语言支持、性能最优化 2.tensorflo...原创 2020-03-14 20:19:19 · 172 阅读 · 1 评论