
TensorFlow
jiao1107
这个作者很懒,什么都没留下…
展开
-
tensorflow2.0(5)函数式API和子类API实现
1.wide&deep模型介绍传送门2.函数式API实现模型# 函数式API 功能APIinput = keras.layers.Input(shape = x_train.shape[1:])hidden1 = keras.layers.Dense(30, activation='relu')(input)hidden2 = keras.layers.Dense(30, a...原创 2020-03-15 21:54:01 · 684 阅读 · 0 评论 -
tensorflow2.0(4)tf.keras搭建深度神经网络
搭建一个有20层全连接的深度神经网络model = keras.models.Sequential()model.add(keras.layers.Flatten(input_shape = [28, 28]))# beginfor _ in range(20): model.add(keras.layers.Dense(100, activation = 'relu'))# e...原创 2020-03-15 15:13:13 · 226 阅读 · 0 评论 -
tensorflow2.0(3)tf.keras搭建分类模型
本文展示了在tf.keras自带的数据集fashion_mnist上构建分类模型。1.导入数据并查看(1)导入相关的库并查看对应的版本import matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as npimport pandas as pdimport sklearn...原创 2020-03-15 13:12:24 · 495 阅读 · 0 评论 -
tensorflow2.0(2)keras简介
1.keras是什么基于python的高级神经网络API以tensorflow、CNTK或者Theano为后端运行,keras必须有后端才可以运行2.tensorflow-kerastensorflow对keras API规范的实现相对于以tensorflow为后端的keras,tensorflow-keras与tensorflow结合更加紧密实现在tf.keras空间下3....原创 2020-03-14 20:37:56 · 212 阅读 · 0 评论 -
tensorflow2.0(1)简介
1.tensorflow是什么Google的开源软件库采取数据流图,用于数值计算支持多种平台——GPU、CPU、移动设备最初用于深度学习,后来变得越来越通用(1)数据流图节点——处理数据线——节点间的输入输出关系线上运输张量节点被分配到各种计算设备上运行(2)特性高度的灵活性、真正的可移植性、产品和科研相结合、自动求微分、多语言支持、性能最优化2.tensorflo...原创 2020-03-14 20:19:19 · 187 阅读 · 1 评论