如何理解递归
- 递归是一种非常高效、简洁的编码技巧,一种应用非常广泛的算法,比如DFS深度优先搜索、前中后序二叉树遍历等都是使用递归。
- 方法或函数调用自身的方式称为递归调用,调用称为递,返回称为归。
- 基本上,所有的递归问题都可以用递推公式来表示。
递归的优缺点
- 优点:代码的表达力很强,写起来简洁。
- 缺点:空间复杂度高、有堆栈溢出风险、存在重复计算、过多的函数调用会耗时较多等问题。
递归的三个条件
- 一个问题的解可以分解为几个子问题的解。
- 这个问题和分解之后的子问题,除了数据规模不同,求解思路完全一样。
- 存在递归终止条件。
如何编写递归代码
写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码。
另外,编写递归代码还有一个关键,那就是遇到递归,就把它抽象成一个递推公式,不用想一层一层的调用关系,不要试图用人脑去分解递归的每个步骤。
递归要注意的点
- 递归代码要警惕堆栈溢出
函数调用使用栈来保存临时变量。每调用一个函数,都会将临时变量封装为栈帧压入内存栈,等函数执行完成返回时,才出栈。系统栈或者虚拟机栈空间一般都不大。如果递归求解的数据规模很大,调用层次很深,就会有堆栈溢出的风险。
我们可以通过在代码中限制递归调用的最大深度的方式来解决这个问题。递归超过一定深度后就不继续往下递归了。
- 递归代码要警惕重复计算
如果递归分解出来的子问题很多都是重复计算的话,可以考虑通过一个数据结构(比如散列表)来保存求解过的结果。当递归调用到求解过的结果时,直接返回求解过的结果即可。
- 时间和空间成本
在时间效率上,递归代码里有很多函数调用,这些函数调用的数量较大时,就会积聚成一个可观的成本。
在空间效率上,递归调用一次就会在内存栈中保存一次现场数据,这部分也会占用一定的空间。
怎么改递归代码为非递归代码
因为递归本身就是借助栈来实现的,只不过我们使用的栈是系统或者虚拟机本身提供的,我们没有感知罢了。如果我们在自己的内存堆上实现栈,手动模拟入栈、出栈过程,这样任何递归代码都可以改写成看上去不是递归代码的样子。不过这样仍然不能避免递归的某些弊端,而且徒增了递归的复杂度。
另一种正常一点的改写成非递归代码的方法是,根据初始条件和递归关系,手动用循环模拟每一层的操作。