【Java数据结构】BST树(二叉搜索树)总结07(把BST树满足[begin,end]区间的值打印出来,放在集合中)

二叉树总结:入口

二叉树的基本操作:

1、插入,删除 操作

2、前、中、后序遍历,层序遍历

3、求BST树高度,求BST树节点个数

4、返回中序遍历第k个节点的值

5、判断一个二叉树是否是BST树,判断一个BST树是否是AVl树

6、BST树的镜像

7、把BST树满足[begin,end]区间的值放在集合中、打印出来

8、判断是否是子树

9、按层打印二叉树

 

把BST树满足[begin,end]区间的值打印出来,放在list集合中。

因为中序遍历是左中右结构,符合数值从小到大的原则,所以只需要将树按中序遍历的方式遍历一遍,然后在遍历的同时比较大小即可。

    /**
     * 把BST树中满足[begin, end]区间的元素打印出来
     */
    public void findAreaDatas(T begin, T end){
        findAreaDatas(this.root, begin, end);
        System.out.println();
    }
    private void findAreaDatas(BSTNode<T> root, T begin, T end) {
        if(root == null){
            return;
        }
        if(root.getData().compareTo(begin) > 0){ // 优化二叉树遍历
            findAreaDatas(root.getLeft(), begin, end);
        }
        if(root.getData().compareTo(begin) >= 0
                && root.getData().compareTo(end) <= 0){
            System.out.print(root.getData() + " ");
        }
        if(root.getData().compareTo(end) < 0){ // 优化二叉树遍历
            findAreaDatas(root.getRight(), begin, end);
        }
    }

     //求二叉树满足某一个区间[begin, end]的所有节点的值,放入list当中
    public List<Integer> findAreaValue(int begin, int end){
        List<Integer> list=new ArrayList<Integer>();
        findValue(root,list,begin,end);
        return list;
    }
    private void findValue(BSTNode root, List<Integer> list, int begin, int end) {
        if(root!=null){
            findValue(root.getLeft(),list,begin,end);
            if(root.getData().compareTo(begin)>0 && root.getData().compareTo(end)<0){
                list.add((Integer) root.getData());
            }else if(root.getData().compareTo(end)>0){
                return;
            }
            findValue(root.getRight(),list,begin,end);
        }
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值