- 博客(6)
- 收藏
- 关注
转载 【实战】基于 Tauri 和 Rust 实现基于无头浏览器的高可用网页抓取
本次围绕 Feed 更新的重构,核心在于引入了基于 Tauri 无头 WebView 和 JavaScript 注入的智能抓取方案,并优化了应用的后台运行与任务调度机制。这不仅解决了困扰已久的抓取成功率问题,也为 Saga Reader 未来的功能扩展(如更复杂的网页内容提取、自动化任务等)打下了坚实的基础。可配置的抓取脚本:允许用户或社区为特定网站贡献和定制抓取规则。资源消耗优化:针对无头 WebView 的资源占用进行持续监控和优化。更智能的调度策略。
2025-07-13 11:42:47
128
转载 概率图模型:机器学习的结构化概率之道
概率图模型是一种通过图形化的方式来表示变量之间概率关系的模型。它将变量表示为图中的节点,而变量之间的关系则通过边来表示。这种模型的核心思想是利用图的结构来简化复杂的概率计算,使得我们可以更直观地理解和分析变量之间的相互作用。概率图模型是概率论与图论的完美结合。它主要分为两类:有向无环图(DAG)模型,也就是贝叶斯网络;以及无向图模型,也就是马尔可夫网。接下来,我们来详细了解一下这两种模型。
2025-06-23 05:46:39
25
转载 【译】让多线程调试更有意义
然后,您可以参与交互式的人工智能对话,以解决常见的线程问题,如死锁和竞争条件,同时优化线程模型以获得更高的效率和可靠性。这些增强通过提供线程活动的简明解释和交互式 AI 驱动的帮助,使您的调试工作流程更加清晰。通过将并行堆栈见解与 Copilot Chat 的应用摘要无缝结合,Visual Studio 简化了您的调试工作流程,使您能够以更大的信心和速度诊断、理解和解决线程问题。这种集成不仅提供了原始的调用堆栈,还提供了对每个线程的操作、潜在问题和修复的清晰概述。AI 生成的线程摘要。
2025-06-04 11:25:43
25
转载 当决策树遇上脏数据:连续值与缺失值的解决方案
决策树是一种基于特征分裂的模型,其核心思想是将数据划分为不同的区域。然而,连续值特征无法直接用于离散分裂点的划分。例如,对于一个年龄特征,我们不能简单地将其划分为“年龄”和“非年龄”,而是需要将其转化为“离散区间”,如“≤30岁”和“>30岁”。这就是对连续值的处理。数据中的缺失值可能导致数据稀疏性、信息损失甚至模型偏差。因此,在决策树中,如何处理缺失值是一个关键问题。决策树在处理连续值和缺失值时的核心思想是灵活性与鲁棒性。
2025-05-31 19:47:07
42
转载 File
1.前言存储数据的方案:有四种存储数据的方法:变量、数组、对象、集合。共有特点:都是内存中的数据容器。在断电、程序终止时会丢失。想要长久保存需要放到文件或者数据库中,存储在硬盘中,File类就是帮助我们来执行这个操作的。2.FileFile时Java.io.包下的类,File的对象,用于代表当前操作系统的文件或文件夹。Fi...
2024-08-30 02:40:00
152
转载 java 判断字符串是否被某个对象映射
字符串相关学习资料:https://edu.51cto.com/video/3832.htmlhttps://edu.51cto.com/video/4055.htmlJava中判断字符串是否被某个对象映射的实现方法 作为一名经验丰富的开发者,我经常被问到一些基础但关键的问题,比如“如何在Java中判断一个字符串是否被...
2024-07-23 03:55:51
106
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅