摆渡车
问题描述
有 n 名同学要乘坐摆渡车从人大附中前往人民大学,第 i 位同学在第 ti
分钟去等车。只有一辆摆渡车在工作,但摆渡车容量可以视为无限大。
摆渡车从人大附中出发、把车上的同学送到人民大学、再回到人大附中(去接其他同学),这样往返一趟总共花费 m分钟(同学上下车时间忽略不计)。
摆渡车要将所有同学都送到人民大学。
凯凯很好奇,如果他能任意安排摆渡车出发的时间,那么这些同学的等车时间之和最小为多少呢?
注意:摆渡车回到人大附中后可以即刻出发。
输入格式
第一行包含两个正整数 n,m,以一个空格分开,分别代表等车人数和摆渡车往返一趟的时间。
第二行包含 n个正整数,相邻两数之间以一个空格分隔,第 i 个非负整数 ti 代表第 i个同学到达车站的时刻。
输出格式
输出一行,一个整数,表示所有同学等车时间之和的最小值(单位:分钟)。
数据范围
n≤500, m≤100, 0≤ti≤4∗106
输入样例:
5 1
3 4 4 3 5
输出样例:
0
输入样例:
5 5
11 13 1 5 5
输出样例
4
说明/提示
【输入输出样例 1 说明】
同学 1 和同学 4 在第 3 分钟开始等车,等待 0 分钟,在第 3 分钟乘坐摆渡车出发。摆渡车在第 4 分钟回到人大附中。
同学 2 和同学 3 在第 4 分钟开始等车,等待 0 分钟,在第 4 分钟乘坐摆渡车 出发。摆渡车在第5 分钟回到人大附中。
同学 5 在第 5 分钟开始等车,等待 0 分钟,在第5 分钟乘坐摆渡车出发。自此 所有同学都被送到人民大学。总等待时间为 0。
【输入输出样例 2 说明】
同学 3 在第 1 分钟开始等车,等待 0 分钟,在第 1 分钟乘坐摆渡车出发。摆渡 车在第 6 分钟回到人大附中。
同学4 和同学 5 在第 5 分钟开始等车,等待1 分钟,在第 6 分钟乘坐摆渡车 出发。摆渡车在第 11 分钟回到人大附中。
同学 1 在第 11 分钟开始等车,等待 2 分钟;同学 2 在第 13 分钟开始等车, 等待 0 分钟。他/她们在第 13 分钟乘坐摆渡车出发。自此所有同学都被送到人民大学。 总等待时间为 4。
可以证明,没有总等待时间小于 4 的方案。
解决方案
线性DP
需要压缩决策空间,减少无效状态转移,降低时间复杂度
也可以考虑斜率优化,维护一个下凸包。此题的斜率是时刻i,单调递增,可以使用单调的队列优化,将计算决策点 fi 的时间复杂度降为O(1)
其它知识点:前缀和
动态方程:f[i]=min ( (cnt[i]−cnt[j])×i−(sum[i]−sum[j])+f[j] ) 其中j≤i−m
代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxt = 4e6 + 9;
int n, m, te , ti;
int ans = 0x7f7f7f7f;
int c[maxt],s[maxt];//c记录人数 s记录总时刻 前缀和用
int f[maxt];//f(i) 无穷小时刻到i时刻 范围内的最小等车代价
int main(){
scanf("%d%d",&n,&m);//n people,m 往返时间
for(int i = 1; i <= n; i ++){
scanf("%d",&ti);
te = max(te,ti);//te is最后一位
c[ti] ++;
s[ti] += ti;
}
for(int i = 1; i <= te + m-1; i ++)
{
s[i] = s[i-1] + s[i];
c[i] = c[i] + c[i-1];
}
for(int i = 0; i <= te + m - 1; i ++)
{
if (i >= m && c[i - m] == c[i]) { f[i] = f[i - m]; continue; } // 压缩无效空间.
f[i] = c[i] * i - s[i];//负无穷到i时刻 ,给fi赋初始值
for(int j = max(0,i -m* 2 + 1); j <= i - m; j ++)//减去无用转移
{
f[i] = min(f[i],f[j] + (c[i] - c[j ]) * i - s[i] + s[j ]);
}
}
for(int i = te; i < te + m; i ++)
ans = min(ans, f[i]);
cout << ans ;
}