amdahl定律

本文深入探讨了Amdahl定律,解释了系统性能提升的极限因素。通过分析系统执行时间与部分性能加速的关系,揭示了在增加计算资源时,如CPU数量,系统整体性能提升的瓶颈在于程序本身的执行效率。
摘要由CSDN通过智能技术生成

表达式

对提升系统某一部分性能所带有的效果做出的观察,这个观察被称作为Amdahl定律。
对系统的某个部门进行加速时,其对系统的整体性能的影响取决于该部分的重要性和加速程度。若系统执行某应用程序需要的时间Told,假设系统某部分执行的时间与Told的比例为a,而改部分性能提升比例为K,及该部分初始所需时间为aTold,现在所需时间为(aTold)k,总的执行时间为:

Tnew = (1-a)Told + (aT~old)/k= [(1-a) + a/k]

加速比 S=Told/Tnew

S=1/((1-a)+a/k)

计算机系统性能方面应用

系统性能的两个指标分别是:
1.运行速度:服务时间、等待时间
2.处理能力:生产量、吞吐量

我们说系统的可伸缩性是指当增加计算资源时(例如CPU、内存、存储容量或I/O带宽),程序的吞吐量或者处理能力能相应地增加。

改善比例k可以理解为cpu的数量。理想情况每加一台cpu,k为自然数增加。但是根据amdahl定律,当K趋于无穷时,S = 1 / (1-a) 。这时候真正的瓶颈在于程序本身的执行速度,加入程序串行化设计过多,执行的时间比a就会加大,加速比还是不会提升

### Amdahl 定律的定义和核心概念 Amdahl定律描述了通过优化或加速计算机系统的一部分所能获得的整体性能提升限度。具体来说,如果只有一部分程序被加速,则整体速度增益受限于未被加速的部分所占的比例[^3]。 #### 数学表达式 假设 \( S \) 表示程序执行时间相对于原始版本的最大可能加速倍数;\( f \) 是可以通过改进措施得到加速的那一部分工作量占比(0≤f<1),其余 (1-f) 的部分无法受益于这种特定类型的优化。那么根据Amdahl定律: \[ S_{\text{max}} = \frac{1}{(1 - f) + \frac{f}{S_p}} \] 其中 \( S_p \) 代表可并行化部分的实际加速因子。当 \( f=0 \),即没有任何部分能够被加速时,最大理论加速比等于1;反之,即使存在无限大的 \( S_p \),只要还有不可忽略的工作负载未能受益于此种形式下的提速方案,最终取得的效果也会受到限制。 此公式强调了一个重要的事实:为了显著改善整个系统的效率,必须关注那些占用大量时间和资源的关键路径上的操作,并尽可能减少串行处理阶段的时间消耗。 #### 实际应用场景 在实际应用中,Amdahl定律提醒开发者们,在追求高性能计算的过程中,不仅要考虑如何有效地利用多核或多处理器架构带来的潜力,还要重视算法设计本身是否存在瓶颈环节。例如,在构建大规模机器学习平台时,除了增加GPU数量外,还需要审视数据预处理流程、特征工程步骤等方面是否有进一步精简的空间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值