# 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
#
# 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
#
# 问总共有多少条不同的路径?
这个题目,明显就是动态规划。初始化第一行和第一列的路径和为1。其他位置的路径总数 = 从上面位置移动到当前位置 + 左边位置移动到当前位置
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
# 初始化dp
dp = [[0]*(m+1) for i in range(n+1)]
# 初始化第一行
for index in range(m):
dp[0][index] = 1
# 初始化第一列
for index in range(n):
dp[index][0] = 1
# 执行动态规划
for x in range(1,n):
for y in range(1,m):
dp[x][y] = dp[x-1][y] + dp[x][y-1]
# 返回目标值
return dp[n-1][m-1]
if __name__ == '__main__':
res = Solution().uniquePaths(1,1)
print(res)