打卡:算法:共有多少条不同路径

10 篇文章 0 订阅
# 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
#
# 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
#
# 问总共有多少条不同的路径?

在这里插入图片描述

这个题目,明显就是动态规划。初始化第一行和第一列的路径和为1。其他位置的路径总数 = 从上面位置移动到当前位置 + 左边位置移动到当前位置

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        # 初始化dp
        dp = [[0]*(m+1) for i in range(n+1)]
        # 初始化第一行
        for index in range(m):
            dp[0][index] = 1
        # 初始化第一列
        for index in range(n):
            dp[index][0] = 1
        # 执行动态规划
        for x in range(1,n):
            for y in range(1,m):
                dp[x][y] = dp[x-1][y] + dp[x][y-1]
        # 返回目标值
        return dp[n-1][m-1]

if __name__ == '__main__':
    res = Solution().uniquePaths(1,1)
    print(res)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值