题目:
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
题解:此题其实就是求解最后一天的最大收益,每一天有两个状态,持有股票、持有现金。
所以可以构成一个动态规划数组:
| day1 | day2 | day3 | |
|---|---|---|---|
| 持有股票 | 0 | 0 | 0 |
| 持有现金 | 0 | 0 | 0 |
例如输入的每天的价格数组为:[7,1,5]
初始化第一天
| day1 | day2 | day3 | |
|---|---|---|---|
| 持有股票 | -7 | 0 | 0 |
| 持有现金 | 0 | 0 | 0 |
然后根据动态规划方程,依次向后推导。
| day1 | day2 | day3 | |
|---|---|---|---|
| 持有股票 | -7 | -1 | -1 |
| 持有现金 | 0 | 0 | 4 |
所以,最终结果取最后一天的即可。max(持有股票,持有现金)
from typing import List
class Solution:
def maxProfit(self, prices: List[int]) -> int:
days = len(prices)
if days<1:
return 0
dp = [[0]*2 for i in range(days)]
dp[0][0] = -prices[0]
dp[0][1] = 0
# print(dp)
for day in range(1,days):
# 0 表示持有股票 1 表示持有现金
dp[day][0] = max(dp[day-1][0],dp[day-1][1]-prices[day])
dp[day][1] = max(dp[day-1][0]+prices[day],dp[day-1][1])
# print(dp)
return dp[days-1][1]
if __name__ == '__main__':
res = Solution().maxProfit([7,1,5,3,6,4])
print(res)

本文介绍了一种计算股票交易最大利润的算法,通过动态规划的方法,利用一个二维数组记录每天持有股票和持有现金的最大收益,从而得出最终的最大利润。
959

被折叠的 条评论
为什么被折叠?



