《GAN Driven Semi-distant Supervision for Relation Extraction》解读
远程监督最近已广泛用于非手工标记数据集的关系抽取任务中。但由于知识库的不完整性,自动构建的数据集包含许多错误标记的否定实例,而当前的远程监督方法忽略了这些不正确的阴性实例,这在训练和测试过程中都造成了严重的误导。为了解决这个问题,我们提出了一种新颖的半远程监督方法用于关系抽取,方法是构建一个小且准确的数据集,并适当地利用许多无关系标签的实例。在我们的方法中,我们通过确定知识库和实体描述来构造准确的实例,以避免错误的阴性标记,并使用生成对抗网络(GAN)框架进一步充分利用未标记的实例。
原创
2020-04-16 23:30:47 ·
670 阅读 ·
1 评论