自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 资源 (5)
  • 收藏
  • 关注

原创 如何优雅地使用Jupyter写MatLab

工欲善其事,必先利其器!熟悉python编程的小伙伴一定知道jupyter编译环境,由于在Jupyter中用户可以将输出结果嵌套在Notebook中,并且支持Markdown语句的操作,这样便可以在Jupyter中输入任何用户需要展示的内容,并且这些内容都会以一种有组织有层次有结构的样子排列出来。另一方面,Jupyter对那些刚入门学习python编程的用户来说也是非常友好的,因为它“所见即所得”的功能,可以逐步计算并展示代码块,一直受到很多用户的青睐。不过在量化界很多Quant在做研究的时候也有很多情

2021-06-25 10:31:56 3367 4

原创 高频交易——当期货配对交易加入了止损

高频交易——当期货配对交易加入了止损数据介绍配对交易寻找配对标的相关性协整性策略构建回测结果总结数据介绍我们有38只期货合约的tick级快照数据,每只合约的数据如下:其中的数据时间戳为100纳秒数据,并且开始于0001年1月1日,因此在这里将其转化为现实数据,并转化为分钟数据:最终的每个合约的分钟数据如下,基于此数据进行配对交易。配对交易寻找配对标的目前在配对交易的识别上比较有...

2020-04-13 23:41:11 2878 4

原创 MatLab 回归|分类树模型中树的参数解释

MatLab 树模型中树参数解释对于回归树或者分类树MaxNumSplitsMergeLeavesMinLeafSizeNumVariablesToSamplePredictorSelectionallsplitscurvatureinteraction-curvatureTipsReproducibleSurrogate对于分类树AlgorithmForCategoricalPullLeft:PCA:MaxNumCategories对于回归树QuadraticErrorTolerance对于回归树或者分

2020-12-03 15:00:33 1213

原创 MatLab xgboost 参数详解 附调参技巧

普通集成参数:Method:提升树方法,LSBoost: Least-squares boosting 最小二乘提升,默认值。Bag:Bootstrap aggregation自枚举聚合,例如随机森林是其中一种 (bagging, for example, random forest)。默认情况下,fitrensemble在每个拆分(随机森林)中使用带有随机预测变量选择的装袋。 要使用没有随机选择的装袋方法,请使用’NumVariablesToSample’值为’all’的树学习器。NumLearni

2020-12-02 13:47:26 4403

原创 CTP收集行情数据封装接口方法集合

基于C++/CLI开发和封装CTP接口供C#托管代码进行调用https://blog.csdn.net/u011439313/article/details/81175342Python量化交易平台开发教程系列1-类CTP交易API的工作原理https://blog.csdn.net/Trader_Python/article/details/52856760CTP入门:https://...

2020-04-26 21:09:18 1921

原创 基于分析师预测股票eps数据生成仓位因子构建投资组合

基于分析师预测eps数据生成仓位因子构建投资组合eps仓位因子的构建eps因子在个股上的测试:股票池测试eps仓位因子的构建首先滚动计算分析师预测eps,包括预测当年的eps0,第二年的eps1,第三年的eps2;基于此,构建业绩透支指数fff,衡量了透支后两年业绩与透支后一年比率:f=((eps2−eps1)/eps1)((eps1−eps0)/eps0)f=\frac{((eps2-e...

2020-03-21 23:22:53 1374

MATLAB强化学习工具箱

内容概要:《Reinforcement Learning Toolbox User's Guide R2024a》介绍了 MathWorks 公司提供的强化学习工具箱的使用方法。本文档详细解释了如何创建和训练不同的代理(agents)来解决强化学习问题,包括环境构建、策略与价值函数的设计以及自定义学习算法的应用。文档提供了多个示例,如通过深度神经网络建立评估器(critic)、定义观测值路径和动作路径并将其连接到公共路径上、初始化dlnetwork对象、构建Actor和Critic等功能模块,旨在帮助用户深入理解强化学习的核心概念和技术。 适用人群:面向有基本数学背景的研究人员、数据科学家、工程师等希望利用Matlab进行机器学习尤其是强化学习应用开发的技术人员。 使用场景及目标:适用于想要研究或者实际部署基于马尔可夫决策过程(MDPs)解决问题的人士;目标是学会使用MathWorks提供的工具快速有效地构建出具有高泛化能力和适应性的AI系统,用于自动驾驶汽车控制、游戏AI、机器人导航等多种领域。 其他说明:文档还强调了软件许可协议的重要性,并列出了一些重要的商标声明。对于政府项目或联邦采购,则明确了相应的法律规定。此外,文档建议在实践时多参考提供的案例,尝试调整参数设置以探索更多可能的效果优化途径。

2024-10-30

MatLab机器学习与统计学最新官方指导手册

MatLab机器学习与统计学最新官方指导手册,覆盖最全的统计学相关知识以及官方权威的机器学习的工具箱使用教程。适合学生/教师/金工人员;欢迎大家下载与转发。

2022-03-04

pandas最全指导手册.pdf

python最全pandas指导手册,优质工具书,不论是日常开发使用还是入门学习,都是非常合适的。如果有用的话希望点赞支持哦~

2021-05-24

算法交易系列经典研报.pdf

本系列报告是量化交易中算法交易的经典系列研报,对刚入门或相关量化从业人员有较强的启发意义

2021-03-17

matlab深度学习工具箱官方指导手册.pdf

matlab深度学习工具箱官方指导手册,包含各大模型参数的解释以及函数调用方式,适合开发以及研究使用。如果大家觉得不错的话,欢迎好评点赞转发,小伙伴们的鼓励就是我最大的动力~

2021-02-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除