程序调用自身的编程技巧称为递归(recursion)。递归做为一种算法在程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。
一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。比如著名的斐波那契数列,汉诺塔问题其实都是递归的思想,当我们用递归去解决时发现这些问题很容易被我们用程序来表现,后面我们讲到的二叉树的遍历也会用到。下面我们先用递归的思想来描述一下斐波那契数列和汉诺塔问题:
/**
* 斐波那契数列
* 1 1 2 3 5 8 13 21 .....
*/
public int fbnq(int n){
if(n == 1 || n == 2){
return 1;
}else {
return fbnq(n-1) + fbnq(n-2);
}
}
/**
* 汉诺塔问题
* @param i
* @param start
* @param middle
* @param end
*/
public void hanoi(int i,int start,int middle,int end){
if(i<=1){
System.out.println(start+"--->" + end);
}else {
hanoi(i-1,start,end,middle);
System.out.println(start+"--->" + end);
hanoi(i-1,middle,start,end);
}
}
从这两段代码我们可以看到,用递归去描述这些问题时非常简洁清晰,代码可阅读星很高。如果说这个实用性还提现不出来那就在用递归去排个序:
/**
* 递归排序
* @param array
* @param left即取数据源的0号位置
* @param right即取数据源最末尾位置
*/
public void margeSort(int array[],int left,int right){
if(left==right){
return;
}else{
int mid=(left+right)/2;
margeSort(array,left,mid);
margeSort(array,mid+1,right);
marge(array,left,mid+1,right);
}
}
/**
* 递归排序
* @param arry
* @param left
* @param mid
* @param right
*/
public void marge(int[] arry,int left,int mid,int right){
int leftSize=mid-left;
int rightSize=right-mid+1;
int[] leftArr=new int[leftSize];
int[] rightArr=new int[rightSize];
//填充数据
for (int i=left;i<mid;i++){
leftArr[i-left]=arry[i];
}
for (int i=mid;i<=right;i++){
rightArr[i-mid]=arry[i];
}
int i=0;
int j=0;
int k=left;
while (i<leftSize && j<rightSize){
if(leftArr[i]<rightArr[j]){
arry[k]=leftArr[i];
k++;i++;
}else {
arry[k]=rightArr[j];
k++;j++;
}
}
while (i<leftSize){
arry[k]=leftArr[i];
k++;i++;
}
while (j<rightSize){
arry[k]=rightArr[j];
k++;j++;
}
}