自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(36)
  • 资源 (10)
  • 收藏
  • 关注

原创 <数据结构>栈的实现

<2>栈的实现(1)栈的顺序存储#define _CRT_SECURE_NO_WARNINGS#include<stdio.h>#include<string.h>#include<stdlib.h>//#include"SeqStack.h"//#include"SeqStack.h"//初始化SeqStack Init_SeqStack(){ struct SStack *stack = malloc(sizeof(struct

2021-07-07 10:38:47 174

原创 <数据结构>单向链表

<2>单向链表实现单向链表链表(头节点和链表长度)-节点(数据和指针)//#include"LinkList.h"#define _CRT_SECURE_ND_WARNINGS#include<stdio.h>#include<string.h>#include<stdlib.h>//链表节点数据类型struct LinkNode{//数据域 void *data;//指针域 struct LinkNode *next;};/

2021-07-06 19:18:26 132

原创 数据结构与算法

数据结构与算法<0>数据结构与算法概述<1>动态数组实现

2021-07-05 16:37:41 136

原创 <数据结构>动态数组实现

<1>动态数组实现动态地址的连续空间#define _CRT_SECURE_ND_WARNINGS#include<stdio.h>#include<string.h>#include<stdlib.h>struct dynamicArray{ void ** pAddr;//维护真实在堆区创建的数组的指针 int m_capacity;//数组容量 int m_size; //数组大小};//初始化数组struct dyna

2021-07-05 16:34:37 153

原创 Linux编程

Linux编程1.Linux基础命令目录文件相关操作2.LINUX系统操作(1)进程相关(2)信号(3)线程相关3.高并发网络编程开发(1)网络编程Socket(2)TCP/UDP(3)select/epoll(4)广播-组播-本地套接字(5)libevent(6)xml/json文件格式4. 高并发Web服务期开发(1)HTTP协议(html)(2)高并发B/S开发(1)(3)高并发B/S开发(2)...

2021-07-04 20:45:26 174

原创 C/C++后端开发(源程序实战)

C/C++后端开发<1> C基础<2>C++基础<3>C++提高(STL)<4>数据结构与算法<5>QT编译器<6>Linux编程<7>数据库<8>项目<1> C基础<2>C++基础<3>C++提高(STL)<4>数据结构与算法<5>QT编译器<6>Linux编程<7>数据库<8>项目...

2021-07-04 20:26:33 1666

原创 win10下安装Ubuntu18.04启动盘(rufus制作)

1.准备(1)准备一个大于16G的U盘备份好文件或清空(2)下载rufushttp://rufus.ie/(3)下载ubuntu18.04桌面版的iso—64位文件http://mirrors.hit.edu.cn/(哈尔滨工业大学镜像)2.rufus制作1.引导类型选择 点“选择”,2.然后点你上面下载的iso文件;3.区类型 +目标系统类型就选MBR+BIOS或UEFI;4.文件系统这个也是选默认FAT32+32K的就行点击确认之后以iso写入点击确定等待10分钟左右

2020-11-12 12:05:18 2619

原创 CUDA并行计算的高效策略

CUDA并行计算的高效策略1.最大化计算强度(高效公式)包括最大化计算量和最小化每个线程的内存读取速度。2.合并全局内存其中连续合并>间隔合并>随机合并3.应该避免线程发散(同一线程块中的线程执行不同内容的代码)其中条件语句和循环中,因为线程操作长短不一导致线程发散并行化高效策略实例1.reduce(归约)算法思路使用全局内存__global__ void global_reduce_kernel(float * d_out, float * d_in) //全局内存

2020-11-07 23:58:27 560

原创 CUDA并行计算的编程模型

CUDA的编程模型CUDA程序中CPU是主导地位,典型的CUDA程序是按这样的步骤执行的:(1)把数据从CPU内存拷贝到GPU内存。(2)给Gpu分配内存,加载Kernel到GPU上(3)把数据从GPU内存同步到CPU内存。(cudaMemcpy)#include <stdio.h>__global__ void square(float* d_out,float* d_in){ int idx = threadIdx.x; float f = d_in[idx];

2020-11-06 14:02:57 368

转载 Focal Loss理解

Focal Loss理解Focal loss主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题。该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘。损失函数形式Focal loss是在交叉熵损失函数基础上进行的修改,首先回顾二分类交叉上损失:y`是经过激活函数的输出,所以在0-1之间。可见普通的交叉熵对于正样本而言,输出概率越大损失越小。对于负样本而言,输出概率越小则损失越小。此时的损失函数在大量简单样本的迭代过程中比较缓慢且可能无法优化至最优。那么Fo

2020-10-22 09:07:10 271

原创 tensorflow创建数据通道(dataset)

1.构建数据通道最常见的的方法有numpy array ,padas dataframe,cvs文件路径构建;tfrecord构建则较为复杂(需要压缩后再解压tf.example)但是它的加载速度快,便于部署方便传播。(1)用tensorflow构建import tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import datasetsimport osos.environ['TF_CPP_MIN_L

2020-08-09 16:42:10 958

转载 python(21字符串格式化)

在许多编程语言中都包含有格式化字符串的功能,比如C和Fortran语言中的格式化输入输出。Python中内置有对字符串进行格式化的操作%。1.模板格式化字符串时,Python使用一个字符串作为模板。模板中有格式符,这些格式符为真实值 预留位置,并说明真实数值应该呈现的格式。Python用一个tuple将多个值传递给模板,每个值对应一个格式符。比如下面的例子:print("I'm %s. I...

2020-05-07 16:37:47 221

转载 python(20内置函数)

python(20内置函数)Python内置(built-in)函数随着python解释器的运行而创建。在Python的程序中,你可以随时 调用这些函数,不需要定义。最常见的内置函数是:print("Hello World!") ,一些内置函数: 基本数据类型 type() 反过头来看看 dir() help() len() 词典 len() 文本文件的输入输出 open() 循...

2020-05-01 21:21:02 230

转载 python(19模块补充)

python(19模块补充)import模块在Python经常使用import声明,以使用其他模块(也就是其它.py文件)中定义的对象。(1) 使用__name__当我们编写Python库模块的时候,我们往往运行一些测试语句。当这个程序作为库被import 的时候,我们并不需要运行这些测试语句。一种解决方法是在import之前,将模块中的测试 语句注释掉。Python有一种更优美的解决方...

2020-05-01 21:05:13 145

转载 python(序列的方法18)

这里写自定义目录标题l为一个表, l2为另一个表我们了解了最基本的序列(sequence)。回忆一下,序列包含有定值表(tuple) 和表(list)。此外,字符串(string)是一种特殊的定值表。表的元素可以更改,定值表一旦建 立,其元素不可更改。任何的序列都可以引用其中的元素(item)。 下面的内建函数(built-in function)可用于序列(表,定值表,字符串):s为一个序...

2020-04-29 21:16:56 176

原创 python垃圾回收引用计数(17)

吃太多,总会变胖,Python也是这样。**当Python中的对象越来越多,它们将占据越来越大 的内存。不过你不用太担心Python的体形,它会乖巧的在适当的时候“减肥”,启动垃圾回 收(garbage collection),将没用的对象清除。**在许多语言中都有垃圾回收机制,比如Java和 Ruby。1.垃圾回收从基本原理上,当Python的某个对象的引用计数降为0时,说明没有任何引用指向...

2019-12-30 20:26:28 146

转载 python内存管理(16)

语言的内存管理是语言设计的一个重要方面。它是决定语言性能的重要因素。无论是C语言 的手工管理,还是Java的垃圾回收,都成为语言最重要的特征。这里以Python语言为例 子,说明一门动态类型的、面向对象的语言的内存管理方式。1.对象的内存使用赋值语句是语言最常见的功能了。但即使是最简单的赋值语句,也可以很有内涵。Python的 赋值语句就很值得研究。 整数1为一个对象。而a是一个引用。利用赋值...

2019-12-29 22:48:30 93

原创 python装饰器(15)

装饰器(decorator)是一种高级Python语法。装饰器可以对一个函数、方法或者类进行加工。 在Python中,我们有多种方法对函数和类进行加工,比如在Python闭包中,我们见到函数对象作为某一个函数的返回结果。相对于其它方式,装饰器语法简单,代码可读性高。因此,装饰器在Python项目中有广泛的应用。装饰器最早在Python 2.5中出现,它最初被用于加工函数和方法这样的可调用对象(c...

2019-12-29 22:21:10 86

原创 常用的深度学习框架

在深度学习中,一般通过误差反向传播算法来进行参数学习。采用手工方式来计算梯度再写代码实现的方式会非常低效,并且容易出错。此外,深度学习模型需要的计算机资源比较多,一般需要在CPU和GPU之间不断进行切换, 开发难度也比较大。因此,**一些支持自动梯度计算、无缝CPU和GPU切换等功能的深度学习框架就应运而生。**比较有代表性的框架包括:Theano、Caffe、 TensorFlow、Pytorch...

2019-12-26 23:23:48 406

原创 深度学习基本概念

深度学习(Deep Learning)是近年来发展十分迅速的研究领域,并且在人工智能的很多子领域都取得了巨大的成功。从根源来讲,深度学习是机器学习 的一个分支,是指一类问题以及解决这类问题的方法。首先,深度学习问题是一个机器学习问题,**指从有限样例中,通过算法总结出一般性的规律,并可以应用到新的未知数据上。**比如,我们可以从一些历史病例的集合,总结出症状和疾病之间的规律。这样当有新的病人时,...

2019-12-26 23:08:35 1814

转载 python闭包(14)

闭包(closure)是函数式编程的重要的语法结构。函数式编程是一种编程范式 (而面向过程编 程和面向对象编程也都是编程范式)。在面向过程编程中,我们见到过函数(function);在面 向对象编程中,我们见过对象(object)。函数和对象的根本目的是以某种逻辑方式组织代 码,并提高代码的可重复使用性(reusability)。闭包也是一种组织代码的结构,它同样提高了 代码的可重复使用性。不同...

2019-12-26 10:04:50 724

原创 python对象的属性(13)

Python一切皆对象(object),每个对象都可能有多个属性(attribute)。Python的属性有一套统 一的管理方案。1.属性的__dict__系统对象的属性可能来自于其类定义,叫做类属性(class attribute)。类属性可能来自类定义自身,也可能根据类定义继承来的。一个对象的属性还可能是该对象实例定义的,叫做对象属性(object attribute)。对象的属性储存在...

2019-12-26 09:27:33 267

转载 python模块(13)

我们之前看到了函数和对象。从本质上来说,它们都是为了更好的组织已经有的程序,以方 便重复利用。 模块(module)也是为了同样的目的。在Python中,一个.py文件就构成一个模块。通过模 块,你可以调用其它文件中的程序。1. 引入(import)和使用模块我们先写一个first.py文件,内容如下:def laugh():print ‘HaHaHaHa’再写一个second.pyi...

2019-12-25 22:24:15 122 1

原创 python文件文本的输入输出(12)

Python具有基本的文本文件读写功能。Python的标准库提供有更丰富的读写功能。 文本文件的读写主要通过open()所构建的文件对象来实现。1. 打开文件,创建文件对象。f = open(文件名,模式)最常用的模式有:“r” # 只读“w” # 写入2. 文件对象的方法:读取方法:content = f.read(N) # 读取N bytes的...

2019-12-25 22:08:07 203

转载 python词典(11)

之前我们说了,表是Python里的一个类。一个特定的表,比如说nl = [1,3,8],就是这个类的 一个对象。我们可以调用这个对象的一些方法,比如 nl.append(15)。 现在,我们要介绍一个新的类,就是词典 (dictionary)。与表相类似,词典也可以储存多个 元素。这种可以用来储存多个元素的对象统称为容器(container)。1. 基本概念常见的创建词典的方法:>&g...

2019-12-23 08:51:07 198

原创 python(10)基础总结

现在我们已经了解了python的基本概念,现在来进行回顾一下之前学过的东西我们之前提到一句话,“Everything is Object”. 那么我们就深入体验一下这句话。首先,我们要介绍两个内置函数,dir()和help() dir()用来查询一个类或者对象所包含的属性(变量属性和方法属性)。你可以尝试一下>>>print dir(list) help()用来查询的说明...

2019-12-22 15:00:03 123

转载 python面向对象的进一步拓展(09)

上一讲我们熟悉了对象和类的基本概念。这一讲我们将进一步拓展,以便我们真正能实际运 用对象和类1. 在方法内调用类属性(变量以及其它方法):上一讲我们已经提到,在定义方法时,必须有self这一参数,这个参数指的是对象。由于对 象拥有类的所有性质,那么我们就可以在方法内部通过self来调用类的其它属性。class Human(object): laugh = 'hahahaha'...

2019-12-22 14:20:48 93

转载 python面向对象(08)

python面向对象的基本概念Python中通过使用类(class)和对象(object)来实现面向对象(object-oriented programming,简称OOP)的编程。面向对象编程的最主要目的是提高程序的重复使用性,这和函数的目的相类似。我们这么早切入面向对象编程的原因是,Python的整个概念是基于对象的。了解OOP对于 我们深入了解Python很关键。1. 类是属性相近的...

2019-12-21 23:39:00 173

转载 python函数(07)

函数最重要的目的是方便我们重复使用相同的一段程序。 将一些操作隶属于一个函数,以后你想实现相同的操作的时候,只用调用函数名就可以,而不需要重复敲所有的语句。1.函数的定义首先,我们要定义一个函数, 以说明这个函数的功能。def square_sum(a,b): c = a**2 + b**2 return c这个函数的功能是求两个数的平方和。首先,def,...

2019-12-21 23:20:27 98

原创 Tensorflow2.0安装

Tensorflow2.0安装首先建立独立的虚拟环境下安装conda create -n tf2.0 python=3.7conda activate tf2.0(1)GPU版本(需要安装cudatoolkit10.0与cudnn包就可以)pip install tensorflow-gpu==2.0.0-alpha0 #GPU版本,前期版本conda install cud...

2019-12-21 16:12:17 336

原创 python循环06

python循环06从上一讲的选择结构,我们已经看到了如何用缩进来表示隶属关系。循环也会用到类似的表 示方法。1.FOR循环for循环需要预先设定好循环的次数(n),然后执行隶属于for的语句n次。基本构造是 举例来说,我们编辑一个叫for.py的文件for a in [3,4.4,'life']: print a 这个循环就是每次从表[3,4.4,‘life’] 中取...

2019-12-20 21:20:41 223

原创 python缩进和选择05

python最具特色的就是用缩进来写模块我们下面以if选择结构来举例。if ( i > 0 ) { x = 1; y = 2; } 这个语句是说,如果i>1的话,我们将进行括号中所包括的两个赋值操作。 括号中包含的就是块操作,它表明了其中的语句隶属于 if 在python中,**同样的目的,在python中, 去除了i > 0周围的括号,去除...

2019-12-20 21:01:49 100

原创 python运算04

python的运算符和其他语言类似(我们暂时只了解这些运算符的基本用法,方便我们展开后面的内容,高级应用暂时不介绍)1.数学运算>>>print 1+9 # 加法 >>>print 1.3-4 # 减法 >>>print 3*5 # 乘法 >>>print 4.5/1.5 ...

2019-12-19 23:05:51 126

原创 python序列03

数据类型:sequence(序列)1.序列是一组有顺序元素的集合序列可以包含一个或多个元素,也可以是一个没有任何元素的空序列,元素可以是我们之前所说的基本数据类型,可以是另一个序列,还可以是我们以后介绍的其他对象。(严格的说,是对象的集合,但鉴于我们还没有引入“对象”概念,暂时说元素)序列有两种:tuple(定值表; 也有翻译为元组) 和 list (表)**tuple和list的主要区...

2019-12-19 22:51:46 79

原创 python基本数据类型02

python基本数据类型021.变量不需要声明python的变量不需要声明,你可以直接输入:a=10 #那么么你的内存里就有了一个变量a, 它的值是10,它的类型是integer (整数)。 在此之前你 不需要做什么特别的声明,而数据类型是Python自动决定的。print aprint type(a)这里,我们学到一个内置函数type(), 用以查询变量的类型。2.回收变量名...

2019-12-18 23:16:25 107

原创 深度学习标注工具labelimg的安装与使用

@[TOC](这里写自定义目录标题)欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。新的改变我们对Markdown编辑器进行了一...

2019-12-10 15:15:08 390

小甲鱼数据结构96集全.txt

小甲鱼数据结构视频——配套课件及源代码

2021-07-01

GY906传感器资料.zip

MLX90614 系列模块是一组通用的红外测温模块。在出厂前该模块已进行校验及线 性化,具有非接触、体积小、精度高,成本低等优点。

2020-10-22

已经训练好tensorflow的Faster RCNN模型下载.7z

已经训练好tensorflow的Faster RCNN模型下载,voc2007,可以直接进行目标检测

2020-08-09

yolov3weights权值.zip

YOLO3主要的改进有:调整了网络结构;利用多尺度特征进行对象检测;对象分类用Logistic取代了softmax。yolo_v3训练权值。

2020-04-07

基于模糊自整定PID的温室温度控制系统设计.pdf

模糊自整定PID的温室温度控制器的设计模糊自整定PID的温室温度控制器的设计.pdf模糊自整定PID的温室温度控制器的设计.pdf模糊自整定PID的温室温度控制器的设计

2019-12-30

labelImg-master.zip

LabelImg 是一个可视化的图像标定工具。使用该工具前需配置环境python + lxml。Faster R-CNN,YOLO,SSD等目标检测网络所需要的数据集,均需要借此工具标定图像中的目标。生成的 XML 文件是遵循 PASCAL VOC 的格式的。

2019-12-10

PCA+SVM人脸识别.zip

主成分分析(pca)是人脸识别中特征提取的主要方法,支持向量机(svm)具有适合处理小样本、非线性和高维数问题,利用核函数且泛化能力强等多方面的优点。文章将两者结合,先用快速pca算法进行人脸图像特征提取和选择,用所选择的人脸特征向量训练多个支持向量机(svm),最后用训练好的支持向量机(svm)进行人脸识别的分类。在orl人脸数据库上进行了实验,取得了满意的识别效果。

2019-12-05

MNIST手写体数字数据集.zip

MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据.

2019-12-05

face-recognition-master.zip

人脸检测是人脸识别的预处理的一部分,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及哈尔特征等,人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。

2019-12-02

MNIST-TensorFlow-master.zip

tensorflow 卷积神经网络 LeNet-5网络 手写体数字识别 ,手写体数字的识别是人工智能识别系统中的重要组成部分。因个体手写数字的差异,现有识别系统准确率较低。基于TensorFlow深度学习框架完成手写体数字的识别及应用,首先建立TensorFlow深度学习框架,并分析、卷积神经网络(LeNet-5)模型结构,再对手写体数据集MNIST的60000个样本进行深度学习,然后进行10000个样本的测试对比,最后实测数据验证基于TensorFlow深度学习LeNet-5网络模型识别率高达99.00%,为人工智能识别系统的发展提供了一定的科研价值。

2019-12-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除