Problem Description
Another common social inability is known as ACM (Abnormally Compulsive Meditation). This psychological disorder is somewhat common among programmers. It can be described as the temporary (although frequent) loss of the faculty of speech when the whole power of the brain is applied to something extremely interesting or challenging.
Juan is a very gifted programmer, and has a severe case of ACM (he even participated in an ACM world championship a few months ago). Lately, his loved ones are worried about him, because he has found a new exciting problem to exercise his intellectual powers, and he has been speechless for several weeks now. The problem is the determination of the number of different labeled binary trees that can be built using exactly n different elements. For example, given one element A, just one binary tree can be formed (using A as the root of the tree). With two elements, A and B, four different binary trees can be created, as shown in the figure. If you are able to provide a solution for this problem, Juan will be able to talk again, and his friends and family will be forever grateful. |
Input
The input will consist of several input cases, one per line. Each input case will be specified by the number n ( 1 ≤ n ≤ 100 ) of different elements that must be used to form the trees. A number 0 will mark the end of input and is not to be processed.
|
Output
For each input case print the number of binary trees that can be built using the n elements, followed by a newline character.
|
Sample Input
1 2 10 25 0 |
Sample Output
1 4 60949324800 75414671852339208296275849248768000000 |
思路:
假设有n个点,那么现在 f(n)可以由下列可能组成:
左子树为空,右子树为n-1,这个时候整棵树可以看作是右子树,原因是点是不同的,这样方便排列,那么这种可能就是 f(0)*f(n);
左子树为1,右子树为 n-2,则为 f(1)*f(n-1);
参考卡特兰数: f(n)=f ( i ) * f ( n - i ) ,0<=i<=n;
由于每一个点是有区别的,所以答案要乘 n!;
化简递推式得到: f (n)=f(n-1)*(4*n-2)*n/(n+1);
import java.math.BigInteger;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
BigInteger [] jc=new BigInteger [205];
jc[1]=BigInteger.ONE;
for(int i=2;i<101;i++){
jc[i]=jc[i-1].multiply(BigInteger.valueOf(4*i-2)).multiply(BigInteger.valueOf(i)).divide(BigInteger.valueOf(i+1));
}
Scanner in=new Scanner(System.in);
while(in.hasNext()){
int n=in.nextInt();
if(n==0)
break;
System.out.println(jc[n]);
}
}
}