根据前序遍历和中序遍历数组构建二叉树
一道比较经典的leetcode二叉树题目
leetcode105
preorder = [3,9,20,15,7]
inorder = [9,3,15,20,7]
我的想法:观察数组特性,使用递归。prestart与preend是针对preorder数组的范围,instart与inend是针对inorder数组的范围。对于递归的每一层,分别确定好范围,再寻找规律。
比如,对于[20, 15, 7] 与[15, 20, 7]这个范围,根结点为preorder[0],在inorder数组中找到该数,该数左边是inorder的左子树范围,右边是inorder的右子树范围。根据各自的长度,又可推导出preoder数组中对应的左子树与右子树范围。
这时有人可能存在疑惑,为什么我在inorder中找到的20这个数字一定是root节点呢?因为原题中规定:You may assume that duplicates do not exist in the tree.
以下是我最初的代码:
class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
int length = preorder.length;
if (length == 0) return null;
TreeNode root = new TreeNode(preorder[0]);
if (length == 1) return root;
return helper(preorder, inorder, 0, length, 0, length);
}
public TreeNode helper(int[] preorder, int[] inorder, int prestart, int preend, int instart, int inend) {
if (prestart >= preend || instart >= inend || prestart > preorder.length-1 || instart > inorder.length-1) return null;
TreeNode root = new TreeNode(preorder[prestart]);
int i;
for (i = instart; i < inend; i++) {
if (inorder[i] == preorder[prestart]) break;
}
root.left = helper(preorder, inorder, prestart+1, prestart+i-instart+1, instart, i);
root.right = helper(preorder, inorder, prestart+i-instart+1, preend, i+1, inend);
return root;
}
}
由于在调试过程中屡次出现index超过range的报错,因此我直接粗暴的把所有报错的可能都添加在退出条件中。这里具体分析一下,哪些是可能出现的,哪些是多余的:
重点看
root.left = helper(preorder, inorder, prestart+1, prestart+i-instart+1, instart, i);
root.right = helper(preorder, inorder, prestart+i-instart+1, preend, i+1, inend);
可代入例子考虑,也就是上文举的[20, 15, 7],[15, 20, 7],其实退出条件应该就是当前子树没有叶子结点的时候,也就是prestart = preend,instart = inend的时候。
同时思考,我们真的需要prestart、preend、instart、inend全部四个变量吗?
preend这个变量,其实并没有真正参与到递归中,因此,可以省略掉。instart=inend的时候,prestart=preend一定成立,因此这个判断也可去掉。
同时,主函数里对length的判断也可以省略了。
简洁后的代码:
class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
int length = preorder.length;
return helper(preorder, inorder, 0, 0, length);
}
public TreeNode helper(int[] preorder, int[] inorder, int prestart, int instart, int inend) {
if (instart == inend) return null;
TreeNode root = new TreeNode(preorder[prestart]);
int i;
for (i = instart; i < inend; i++) {
if (inorder[i] == preorder[prestart]) break;
}
root.left = helper(preorder, inorder, prestart+1, instart, i);
root.right = helper(preorder, inorder, prestart+i-instart+1, i+1, inend);
return root;
}
}
根据中序遍历和后序遍历数组构建二叉树
inorder = [9,3,15,20,7]
postorder = [9,15,7,20,3]
思路与上一题基本一致,区别只是前一轮的root是通过preorder的第一位先确定的,这一轮则根据postorder的最后一位确定。
class Solution {
public TreeNode buildTree(int[] inorder, int[] postorder) {
int length = inorder.length;
return helper(inorder, postorder, 0, length, 0, length);
}
public TreeNode helper(int[] inorder, int[] postorder, int instart, int inend, int poststart, int postend) {
if (instart == inend || poststart == postend) return null;
TreeNode root = new TreeNode(postorder[postend-1]);
int i;
for (i = instart; i < inend; i++) {
if (inorder[i] == root.val) break;
}
root.left = helper(inorder, postorder, instart, i, poststart, poststart + i - instart);
root.right = helper(inorder, postorder, i+1, inend, poststart + i - instart, postend - 1);
return root;
}
}
根据评论区,也可以用hashmap存储inorder的index和value,节省查找时间。
根据前序遍历和后序遍历数组构建二叉树
pre = [1,2,4,5,3,6,7], post = [4,5,2,6,7,3,1]
Output: [1,2,3,4,5,6,7]
前序遍历:[中,左,右]
后序遍历:[左,右,中]
由此可以看出,答案并不唯一。
如何找到左右子树界限?preorder第一位在postorder中找到,就找到了左右子树的界限。比如1,245,367. 再看245、452,此时45可以是左右子树,也可以都在左子树,都在右子树,我们可以假设分别它们是左右子树。
class Solution {
public TreeNode constructFromPrePost(int[] pre, int[] post) {
int length = pre.length;
return helper(pre, post, 0, length, 0, length);
}
public TreeNode helper(int[] pre, int[] post, int prestart, int preend, int poststart, int postend) {
if (prestart+1 == preend && poststart+1 == postend) return new TreeNode(pre[prestart]);
if(poststart>=postend) return null;
TreeNode root = new TreeNode(pre[prestart]);
int i;
for (i = poststart; i < postend; i++) {
if (post[i] == pre[prestart+1]) break;
}
root.left = helper(pre, post, prestart+1, prestart+2+i-poststart, poststart, i+1);
root.right = helper(pre, post, prestart+2+i-poststart, preend, i+1, postend-1);
return root;
}
}