机器学习
文章平均质量分 78
进击的AI小白
这个作者很懒,什么都没留下…
展开
-
【吴恩达机器学习笔记】线性回归模型之多变量线性回归
主要介绍了多变量线性回归模型的假设函数、代价函数、优化算法等概念,以及梯度下降法中学习率α选择、特征选取及其他一些多元线性回归模型中的一些实用技巧。原创 2019-04-20 21:33:32 · 1240 阅读 · 0 评论 -
【机器学习实战笔记(3-2)】朴素贝叶斯法及应用的python实现
本文首先从一个简单的文本分类入手,介绍朴素贝叶斯法的整个实现过程,然后介绍两个应用:垃圾邮件过滤、从个人广告中获取区域倾向,并且在每个函数的后面都有详细的注释,非常适合入门。原创 2019-05-23 15:21:54 · 568 阅读 · 0 评论 -
【机器学习实战笔记(3-1)】朴素贝叶斯法相关概念及原理
本文首先介绍了贝叶斯决策理论及概率论的基本概念,然后详细介绍了朴素贝叶斯的学习、生成及分类决策的整个过程,以及过程中涉及的一些技术细节。原创 2019-05-22 21:50:51 · 658 阅读 · 0 评论 -
【机器学习实战学习笔记(2-2)】决策树python3.6实现及简单应用
本文主要介绍了决策树的简单实现,包括香农熵、最优特征选择、决策树创建及利用决策树进行分类,存储决策树等python3.6代码实现。原创 2019-05-15 20:02:42 · 423 阅读 · 0 评论 -
【机器学习实战学习笔记(2-1)】决策树原理及相关概念细节
本文主要介绍的决策树的基本概念及决策树学习算法的三个步骤:特征选择、生成、剪枝的具体方法以及一些概念细节。原创 2019-05-15 18:29:18 · 292 阅读 · 0 评论 -
【分类问题中模型的性能度量(二)】超强整理,超详细解析,一文彻底搞懂ROC、AUC
本文详细介绍了二分类问题中的ROC与AUC,耐心思考下来,包你彻底搞懂ROC与AUC的来龙去脉~原创 2019-05-08 19:16:20 · 1949 阅读 · 2 评论 -
【吴恩达机器学习笔记】线性回归模型之单变量线性回归
首先从总体上介绍了机器学习问题大致的分类框架,然后介绍了较简单的单变量线性回归模型的假设函数、代价函数、优化目标、优化算法等基本概念,称得上是机器学习入门第一课。原创 2019-04-20 14:41:49 · 672 阅读 · 0 评论 -
【分类问题中模型的性能度量(一)】错误率、精度、查准率、查全率、F1详细讲解
本文主要介绍了分类问题模型的一些常用性能度量,概念梳理清晰,并且介绍了自己的记忆技巧帮助大家记忆。原创 2019-05-05 10:53:32 · 7198 阅读 · 1 评论 -
【吴恩达机器学习笔记】正则化
本文主要讲了利用正则化来解决过拟合问题的知识,并且讲解了正则化线性回归及正则化逻辑回归的代价函数及梯度下降更新公式等的推导过程。原创 2019-04-23 22:49:23 · 1642 阅读 · 0 评论 -
【吴恩达机器学习笔记】分类问题之逻辑回归模型(二元分类及多分类问题)
主要介绍了二元分类及多元分类中的逻辑回归模型的假设函数、代价函数、优化算法及其他的一些细节问题。原创 2019-04-23 17:02:57 · 4264 阅读 · 0 评论 -
【机器学习实战学习笔记(1-2)】k-近邻算法应用实例python代码
本文在上一篇k-近邻算法原理的基础上简单介绍了它的两个应用实例及一些细节问题,绝对小白友好型文章~原创 2019-05-02 14:51:22 · 594 阅读 · 0 评论 -
【机器学习实战学习笔记(1-1)】k-近邻算法原理及python实现
本文介绍了一种经典的分类方法:k-近邻算法,主要介绍了它的原理、python3.6简单实现及一些细节问题,绝对小白友好型文章~原创 2019-05-01 20:37:30 · 494 阅读 · 0 评论 -
【机器学习实战笔记(3-3)】关于朴素贝叶斯实现代码中的一些错误总结
《机器学习实战》第4章,代码实现过程中遇到的一些问题,及解决方法。原创 2019-05-23 15:53:25 · 1020 阅读 · 5 评论