题目
最长回文字符串是一种对称的字符串,如 s = "ababd",其中"aba"或"bab"都是回文字符串。
求解思路
最开始的思路是用类似括号匹配的放手,利用栈来做“对对消”,来判断一个字符串是不是回文字符串,但实际操作中发现 “对称轴” 元素是不确定的,前面的消除会导致后面的无法对比。
然后又被提醒到,回文对称有两种,奇数对称,如"abcba", 和偶数对称,如"abccba"。这种方式也是不一样的。
因此解决思路如下:
- 确定一个基础点作为轴点,分别按奇数策略和偶数策略(作为左边点),看是否存在回文字符串,如果两种策略都存在则返回较长的那个,如"bccca", 存在"cc"和"ccc"两种,返回"ccc“。
- 遍历这个字符串,依次作为轴点,寻找出所有的回文字符串,组成一个列表
- 遍历结果列表,返回最长的那个
代码实现
寻找以一个索引作为轴的回文串-偶数模式,如"abba"
from typing import Optional, List
def get_palindromic_substring_from_index_1(s: str, mid_index: int) -> Optional[str]:
"""寻找字符串s中以mid_index作为轴的对称字符串-偶数模式-作为左边点"""
if mid_index < 1:
return None
# 最大偏移量-取左右两边长度的最小值
max_offset = min([mid_index, len(s) - mid_index])
offset = 1
while offset < max_offset:
# 偶数模式,左侧偏移量-1
left, right = s[mid_index - (offset - 1)], s[mid_index + offset]
if left != right:
break # 遇到一个不对称值则跳出循环
offset += 1
# offset大于初始值则存在以该点为轴的回文字符串
if offset > 1:
offset -= 1
return s[mid_index - (offset - 1):mid_index + offset + 1]
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
寻找以一个索引作为轴的回文串-奇数模式,如"abcba"
def get_palindromic_substring_from_index_2(s: str, mid_index: int) -> Optional[str]:
"""寻找字符串s中以mid_index作为轴的对称字符串-奇数模式"""
# 奇数模式
if mid_index < 1:
return None
# 最大偏移量-取左右两边长度的最小值
max_offset = min([mid_index, len(s) - mid_index])
offset = 1
while offset < max_offset:
left, right = s[mid_index - offset], s[mid_index + offset]
if left != right:
break # 遇到一个不对称值则跳出循环
offset += 1
# offset大于初始值则存在以该点为轴的回文字符串
if offset > 1:
offset -= 1
return s[mid_index - offset:mid_index + offset + 1]
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
综合两种模式,寻找以一个索引作为轴的较长的回文串
def get_palindromic_substring_from_index(s: str, mid_index: int) -> Optional[str]:
"""寻找字符串s中以mid_index作为轴的对称字符-综合两种策略返回比较长的的那个"""
r1 = get_palindromic_substring_from_index_1(s, mid_index)
r2 = get_palindromic_substring_from_index_2(s, mid_index)
if r1 is None:
return r2
if r2 is None:
return r1
# 如果两种模式都存在返回比较长的那个
if len(r1) > len(r2):
return r1
return r2
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
寻找字符串中的所有回文串
从所有回文串中寻找最长的那个回文串
测试代码
注:该算法的时间复杂度为O(n^2)左右,不是最优的算法
点击查看完整代码
from typing import Optional, List
def get_palindromic_substring_from_index_1(s: str, mid_index: int) -> Optional[str]:
"""寻找字符串s中以mid_index作为轴的对称字符串-偶数模式-作为左边点"""
if mid_index < 1:
return None
# 最大偏移量-取左右两边长度的最小值
max_offset = min([mid_index, len(s) - mid_index])
offset = 1
while offset < max_offset:
# 偶数模式,左侧偏移量-1
left, right = s[mid_index - (offset - 1)], s[mid_index + offset]
if left != right:
break # 遇到一个不对称值则跳出循环
offset += 1
# offset大于初始值则存在以该点为轴的回文字符串
if offset > 1:
offset -= 1
return s[mid_index - (offset - 1):mid_index + offset + 1]
def get_palindromic_substring_from_index_2(s: str, mid_index: int) -> Optional[str]:
"""寻找字符串s中以mid_index作为轴的对称字符串-奇数模式"""
# 奇数模式
if mid_index < 1:
return None
# 最大偏移量-取左右两边长度的最小值
max_offset = min([mid_index, len(s) - mid_index])
offset = 1
while offset < max_offset:
left, right = s[mid_index - offset], s[mid_index + offset]
if left != right:
break # 遇到一个不对称值则跳出循环
offset += 1
# offset大于初始值则存在以该点为轴的回文字符串
if offset > 1:
offset -= 1
return s[mid_index - offset:mid_index + offset + 1]
def get_palindromic_substring_from_index(s: str, mid_index: int) -> Optional[str]:
"""寻找字符串s中以mid_index作为轴的对称字符-综合两种策略返回比较长的的那个"""
r1 = get_palindromic_substring_from_index_1(s, mid_index)
r2 = get_palindromic_substring_from_index_2(s, mid_index)
if r1 is None:
return r2
if r2 is None:
return r1
# 如果两种模式都存在返回比较长的那个
if len(r1) > len(r2):
return r1
return r2
def get_all_palindromic_substrings(s: str) -> List[str]:
"""查找所有回文子字符串"""
results = []
for mid_index in range(1, len(s)-1):
r = get_palindromic_substring_from_index(s, mid_index)
if r is not None:
results.append(r)
return results
def get_longest_palindromic_substring(s: str) -> Optional[str]:
"""查找最长回文字符串"""
results = get_all_palindromic_substrings(s)
if len(results) == 0:
return None
# 在所有回文字符串中寻找最长的一个,如果存在长度相等的,只取其中一个
return max(results, key=len)
if __name__ == '__main__':
print(get_longest_palindromic_substring('ababd'))
print(get_longest_palindromic_substring('aaabacccababa'))
print(get_longest_palindromic_substring('aaabaccababa'))
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.