eig——特征值和特征向量
[V,D]=eig(A);
矩阵D对角线元素是特征值,矩阵V的列是右特征向量。什么是右特征向量?
D 中的特征值对应于 V 的各列中的特征向量
diag——提取对角线元素
diag(A)
提取矩阵A对角线上的元素,返回一个列向量
linspace——生成线性间距向量
例如
theta=linspace(-pi/2,pi/2,2000);
意思是,生成在-pi/2到pi/2之间2000个等间距点的行向量
inv——矩阵求逆
C=inv®;%计算方阵R的逆矩阵
randn——正太分布的随机数
S=randn(length(S),L);
返回一个从标准正态分布中得到的随机标量。
randn(3,4) 返回一个 3×4 的矩阵。矩阵元素由正太分布的随机数组成
sort——对数组元素排序
[Sp_rand,I]=sort(Sp,‘descend’);
Sp是列向量
变量I是索引,变量Sp_rand是按降序(descent)排列的向量
- sort(A,2);对矩阵A按列排序,即从左到右排序列,第一列,第二列…
冒号
用于创建向量,下标数组,指定迭代。
- 指定迭代
- 创建下标数组,即创建索引向量,用来遍历数组,选择数组的行和列
A(:,j)——A的第j列
A(i ,:)——A的第i行
A(j:k)——A(j),A(j+1),…,A(k)
A(:,j:k)——A(:,j),A(:,j+1),…,A(:,k)
逗号分隔,不是分号A(:, j)
A(j)
A(1:5)的结果是一个行向量
std2——计算标准差
标准差又称均方差,标准差是方差的算术平方根。标准差可以反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。标准差越小,表明数据越聚集;标准差越大,表明数据越离散。
ksdensity
方差能很好的解释一维数据的分布特性
方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根。方差相应的计算公式为:
协方差矩阵
对于二维的数据,协方差矩阵
X与Y的相关性和Y与X的相关性是一样的,即σ(x,y)=σ(y,x)
协方差矩阵始终是一个对称阵,其对角线上的是方差,非对角线上的是协方差。
对协方差进行特征分解,得到特征值构成的矩阵和特征向量构成的矩阵
二维情况下有两个特征值和两个特征向量
plot
D是一个二维矩阵,
D(1,:)是横坐标值,D(2,:)纵坐标值,线型*
- plot(D(1,:),D(2,:),’ * ')
MATALAB将矩阵的每一列数据绘成单独的线条,矩阵的每一列数据看成一个向量。
cosd——参数以度为单位的余弦。
此 MATLAB 函数 返回 X 的元素的余弦(以度为单位)。
Y = cosd(X)