- 博客(7)
- 收藏
- 关注
原创 机器学习初探(四)集成学习
机器学习初探(四)集成学习“集成”的思想众擎易举集成学习基于这样的思想:对于比较复杂的任务,综合许多人的意见来进行决策会比“一家独大”要更好。换句话说,就是通过适当的方式集成许多“个体模型”得到的最终模型要比单独的“个体模型”的性能更优。可以通过下图来直观感知这个过程。此时,问题的关键转化为两点:如何选择、生成弱分类器和如何对他们进行提升(集成)。针对以上问题,有三种思路:(1)将...
2019-06-14 15:36:51 291
原创 机器学习初探(三)决策树
机器学习初探(三)决策树在开始介绍决策树的基本算法之前,首先要了解一下决策树算法中的所使用到的损失函数。决策树中度量不确定性的度量标准几乎所有的决策树算法的思想都是一样的:不断地对数据集进行划分,而决定如何划分的标准是使得数据的“不确定性”减小的越多越好,就意味着该划分能够获得越多信息。接下来介绍一下常用的两种度量标准:1.信息熵公式:H(y)=−∑k=1KpklogpkH\left (...
2019-06-04 21:15:40 256
原创 机器学习初探(二)贝叶斯分类器
机器学习初探(二)贝叶斯分类器今天来学习一下贝叶斯分类器。谈到贝叶斯分类器就不得不提到贝叶斯学派与频率学派,关于两者一个直观的解释是:频率学派强调频率的“自然属性”,认为应该使用事件在重复实验中发生的频率作为其发生的概率的估计。贝叶斯学派不强调事件的“客观随机性”,认为仅仅是“观察者”不知道事件的结果。换句话说,贝叶斯学派认为:事件之所以有随机性仅仅是因为“观察者”的知识不完备,对于“知情...
2019-06-02 13:12:58 308
原创 机器学习初探(一)简单的线性回归
机器学习初探(一)简单的线性回归今天开一个新系列——机器学习初探,记录一下《Python与机器学习实战》的学习笔记。今天是第一章python与机器学习入门。什么是机器学习简单来说,在统计理论下机器学习就是追求合理的假设空间的选取和模型的泛化,可以说是计算机使用输入给它的数据,利用人类赋予它的算法得到某种模型的过程,其最终目的则是使用该模型,预测未来未知数据。####第一个机器学习样例现有...
2019-05-30 16:33:04 277
原创 QUOTA——对分布强化学习的探索策略改进
QUOTA:The Quantile Option Architecture for Reinforcement Learning今天!我们要介绍的是来自于Alberta大学与华为诺亚实验室合作的一项研究,该研究是对分布强化学习中探索策略的一个改进,其中所蕴含的分布强化学习框架下的探索思想非常值得学习,可以说是大大拓展了我的视野。这里说个题外话,最近中美贸易摩擦导致华为遭到美国的严厉打击,众多科...
2019-05-23 16:18:02 996
原创 GAN-DQN
GAN-DQN本期介绍一项来自麦吉尔大学的有趣工作,它拓展了分布强化学习在深度学习框架下的应用,提出了一个十分有趣的深度强化学习框架:GAN+DQN。文章验表明,GAN-DQN对于高度复杂的强化学习任务尤其有效,在最终控制效果以及减小回报值方差方面都有长足的改进。在这里先放出结果图供诸君一览,领略一下GAN-DQN的优势:从结果上看,可知GAN-DQN在收敛速度上并没有优势,甚至有着一些劣势...
2019-05-21 14:42:32 1323
原创 基于分位数回归的分布强化学习(Distributional Reinforcemet Learning with Quantile Regression)
引入Deep Mind团队联合剑桥大学在2017年提出了一种新的强化学习范式——基于分位数回归的分布强化学习(QR-DRL),为强化学习的未来发展指明了一个更加有前景的方向,以学习回报值的概率分布来代替学习回报值的期望值。Deep Mind的论文通过在atari游戏中的实验,证明了QR-DRL的强大性能,在众多游戏中都达到了state-of-art。私以为QR-DRL是近年来为数不多的,从根本理...
2019-05-20 22:27:54 5682
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人