Chino with Train to the Rabbit Town(前缀异或和)+(前缀后缀或)

本文介绍了两个关于位运算的题目,分别是关于异或和的最大化问题和寻找N个数中N-1个数进行或运算使结果最大的问题。通过使用前缀异或和及前缀后缀或的技巧,可以有效地解决这些问题。
摘要由CSDN通过智能技术生成

链接:https://ac.nowcoder.com/acm/contest/553/G
来源:牛客网
 

时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld

题目描述

Chino的数学很差,因此Cocoa非常担心。这一天,Cocoa准备教Chino学习异或。
众所周知,,即“a异或b”表示了ab的二进制按位异或的结果(在C/C++中,表示了异或运算。),它的规则是如果这一位相同为0,否则为1.例如,,因为,根据定义,它们之间的异或值是,下面是异或运算的真值表:

AB
000
011
101
110

异或还有一些非常有趣的性质,比如之类的。定义很简单,Chino也一下就学会了,那么现在就是作业时间啦!
开往兔子镇的火车一开始还是手摇式的木板车,所有人都在木板上做成一排,当然,就像你想的那样,旅途非常尬。如今,铁路修好了,因此人们可以坐火车来到兔子镇。有一个问题就是怎么划分车厢——大家都希望能够单独一个车厢,但在大部分情况下这是做不到的。
火车上有个乘客,坐在第i位的乘客对车厢的划分有一个意愿值,我们定义一节车厢的总意愿值为这节车厢所有人意愿值的异或和,即,如果这节车厢包含了第名乘客,那么这节车厢的意愿值是.特别地,如果这节车厢只有一名乘客i,那么这节车厢的意愿值就是a_i.这个意愿值当然越高越好,但是这会让当局非常难办,因此他们确定了一个标准kk的范围介于所有可能出现的意愿值之间。现在的任务就是让尽可能多的车厢的意愿值为k.
题目对Chino来说太难啦,你能帮一帮Chino吗?

输入描述:

第一行是两个数n, k;接下来一行是n个数ai

输出描述:

题目中要求的答案

示例1

输入

3 1
1 2 3

输出

2

说明

我们划分成[1]和[2,3]两段,显然每段的异或和都是1.注意,同一位乘客只能被划分在一节车厢中,即,你不能做出类似[1,2],[2,3]的划分

解析:

sum[i]=sum[i-1]^x; sum[i]^k存在,则前面有个区间异或和为k,(sum[i]^k)^k=sum[i]

我们用map来标记每个异或和

ac:

#include<bits/stdc++.h>
using namespace std;
map<int,int> mp;

int main()
{
    int n,k,sum,ans=0,x;
    scanf("%d%d",&n,&k);
    sum=0;
    mp[0]=1;
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&x);
        sum=sum^x;
        if(mp[sum^k]>0)
        {
            ans++;
            mp.clear();
            sum=0;
            mp[0]=1;
        }
        else{
            mp[sum]=1;
        }
    }
    printf("%d\n",ans);
    return 0;
}

 

链接:https://ac.nowcoder.com/acm/contest/549/D
来源:牛客网
 

时间限制:C/C++ 2秒,其他语言4秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld

题目描述

位运算是一个非常重要的东西。而小A最近在学习位运算,小A看到了一道很简单的例题,是说从N个数里面选出N-1个数要让它们或起来的值最大,小A想知道这个答案是多少。你可以帮帮他吗?

输入描述:

第一行一个整数N表示有N个数接下来一行N个数表示A1,A2...AN第一行一个整数N表示有N个数接下来一行N个数表示A1,A2...AN

输出描述:

一行输出个结果代表最大值一行输出个结果代表最大值

示例1

输入

5
1 2 4 8 16

输出

30

说明

选择2,4,8,16或的和是最大的,没有比这个更大的方案。

备注:

1≤N≤5e6,1≤Ai≤longlong

解析:

用前缀和后缀处理,可以在O(N)的复杂度下达到跳过一些数的或和

ac:

#include <bits/stdc++.h>
using namespace std;
const int maxn= 5e6+5;
long long a[maxn],l[maxn],r[maxn];
long long ans=0;
 
int main (){
    int n;
    scanf("%d",&n);
    for (int i=1;i<=n;i++)
        scanf("%lld",&a[i]);
    for (int i=1;i<=n;i++) 
        l[i]=a[i]|l[i-1];
    for (int i=n;i>=1;i--) 
        r[i]=a[i]|r[i+1];
    for (int i=1;i<=n;i++)
        ans=max(ans,l[i-1]|r[i+1]);
    printf("%lld",ans);
    return 0;
}

也能过的O(NlogN)复杂度算法

#include<bits/stdc++.h>
#define IOS std::ios::sync_with_stdio(false);
#define pb push_back
#define ll long long
#define mod 1e9+7
#define MAXN 5000005
using namespace std;
 
int a[100];
vector<int> vc[MAXN];
 
int main()
{
    IOS
    int n,x;
    scanf("%d",&n);
    ll sum=0;
    for(int i=0;i<n;i++)
    {
        scanf("%d",&x);
        int c=x;
        int t=1,z;
        while(c)
        {
            z=c%2;
            if(z)
            {
                a[t]++;
                vc[i].push_back(t);
            }
            c=c/2;
            t++;
        }
    }
    int ans=0;
    for(int i=0;i<n;i++)
    {
        int sum=0;
        int len=vc[i].size();
        for(int j=0;j<len;j++)
            a[vc[i][j]]--;
        for(int i=1;i<64;i++)
            if(a[i]>0)
                sum+=pow(2,i-1);
        ans=max(sum,ans);
        for(int j=0;j<len;j++)
            a[vc[i][j]]++;
    }
    printf("%d\n",ans);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值